2020 (vol. 30) - Number 4

*A.B. Malinowska, R. Kamocki, R. Almeida, T. Odzijewicz:*

On the existence of optimal consensus control for the fractional Cucker--Smale model

*R. Grymin, W. Bożejko, J. Pempera, M. Wodecki, Z. Chaczko:*

Algorithm for solving the Discrete-Continuous Inspection Problem

*T. Kaczorek, A. Ruszewski:*

Global stability of discrete-time nonlinear systems with descriptor standard and fractional positive linear parts and scalar feedbacks

*R. Arora, K. Gupta:*

Fuzzy goal programming technique for multi-objective indefinite quadratic bilevel programming problem

*P. Nowak, J. Czeczot, P. Grelewicz:*

Tuning rules for industrial use of the second-order Reduced Active Disturbance Rejection Controller

*M.I. Gomoyunov:*

Optimal control problems with a fixed terminal time in linear fractional-order systems

*Muhafzan, A. Nazra, L. Yulianti, Zulakmal, R. Revina:*

On LQ optimization problem subject to fractional order irregular singular systems

*M. Blizorukova, V. Maksimov:*

On one algorithm for reconstruction of an disturbance in a linear system of ordinary differential equations

ACS Abstract:

**2008 (Volume 18)**

Number 1

**Supervised multiple model adaptive control of a heating fan**

J.M. Lemos(INESC-ID/IST, Lisboa, Portugal) | L. Marreiros(INESC-ID/IST, Lisboa, Portugal) | B. Costa(INESC-ID/IST, Lisboa, Portugal) |

**keywords:** adaptive control, switched control, distributed parameter, thermal processes

**A new stopping criterion for iterative solvers for control optimal problems**

K. Krumbiegel(University Duisburg-Essen, Duisburg, Germany) | A. Rosch(University Duisburg-Essen, Duisburg, Germany) |

**keywords:** linear quadratic optimal control problems, control constraints, error estimates, projected gradient method, primal-dual active set strategy, penalty methods, stopping criteria

**Realization problem for fractional continuous-time systems**

T. Kaczorek(Bialystok Technical University, Bialystok, Poland) |

**keywords:** fractional, positive, realization, continuous-time linear system

**Towards robust minimum variance control of nonsquare LTI MIMO systems**

W.P. Hunek(Opole University of Technology, Opole, Poland) |

**keywords:** robust minimum variance control, nonsquare systems, inverses of polynomial matrices, transmission zeros, control zeros, minimum energy

**Robust stability of systems with parametric uncertainty**

R. Matusu(Tomas Bata University in Zlin, Czech Republic) | R. Prokop(Tomas Bata University in Zlin, Czech Republic) |

**keywords:** robust control, interval uncertainty, Kharitonov theorem, zero exclusion condition, polynomial toolbox

**A comparative study on estimation techniques with applications to power signal frequency**

A.M. Panda(Department of Electrical Engineering, NIT Rourkela-769008, Orissa, India) | S.R. Mohanty(Department of Electrical Engineering, NIT Rourkela-769008, Orissa, India) | P.K. Ray(Department of Electrical Engineering, NIT Rourkela-769008, Orissa, India) | B. Subudhi(Department of Electrical Engineering, NIT Rourkela-769008, Orissa, India) |

**keywords:** extended least square (ELS) technique, Kalman filter, least mean square (LMS) technique, power system parameters

**Robust nonlinear PI for attitude stabilization of a four-rotor mini-aircraft: From theory to experiment**

M. Bouchoucha(LCC, Ecole Militaire Polytechnique, Algerie) | M. Tadjine(LCP, Ecole Nationale Polytechnique, Algerie) | A. Tayebi(ACL, Lakehead University, Thunder Bay, Canada) | P. Mullhaupt(ACL, Ecole Polytechnique Federale de Lausanne, Switzerland) | S. Bouabdallah(ASL, Swiss Federal Institute of Technology, Switzerland) |

**keywords:** attitude stabilization, backstepping, Euler angles parametrization, nonlinear robust PI, quadrotor

**Positive fractional discrete-time Lyapunov systems**

P. Przyborowski(Warsaw University of Technology, Warsaw, Poland) |

**keywords:** fractional, positive, discrete-time, Lyapunov system, stability, controllability to zero, reachability

<< Back