2022 (vol. 32) - Number 1

*J. Cvejn:*

The magnitude optimum design of the PI controller for plants with complex roots and dead time

*S.F. Al-Azzawi, M.A. Hayali:*

Coexisting of self-excited and hidden attractors in a new 4D hyperchaotic Sprott-S system with a single equilibrium point

*M.A. Hammami, N. El Houda Rettab, F. Delmotte:*

On the state estimation for nonlinear continuous-time fuzzy systems

*M. Ilyas, M.A. Khan, A. Khan, Wei Xie, Y. Khan:*

Observer design estimating the propofol concentration in PKPD model with feedback control of anesthesia administration

*L. Moysis, M. Tripathi, M. Marwan:*

Adaptive observer design for systems with incremental quadratic constraints and nonlinear outputs – application to chaos synchronization

*S. Vaidyanathan, K. Benkouider, A. Sambas:*

A new multistable jerk chaotic system, its bifurcation analysis, backstepping control-based synchronization design and circuit simulation

*T.T. Tuan, H. Zabiri, M.I.A. Mutalib, Dai-Viet N. Vo:*

Disturbance-Kalman state for linear offset free MPC

*Yuan Xu, Jun Wang:*

A novel multiple attribute decision-making method based on Schweizer-Sklar *t*-norm and *t*-conorm with *q*-rung dual hesitant fuzzy information

*T. Kaczorek:*

Observers of fractional linear continuous-time systems

ACS Abstract:

**2006 (Volume 16)**

Number 2

**Principles of constraint systems and constraint solvers**

Thom Frühwirth(Faculty of Computer Science, University of Ulm, Germany) | Slim Abdennadher(Department of Computer Science, German University Cairo, Egypt) |

**keywords:** computational logic, executable specifications, rule-based programming, program analysis, algorithms

**An introduction to interval-based constraint processing**

Gerrit Renker, Hatem Ahriz(School of Computing, The Robert Gordon University, Aberdeen, UK) |

Constraint programming is often associated with solving problems over finite domains. Many applications in engineering, cad and design, however, require solving problems over continuous (real-valued) domains. While simple constraint solvers can solve linear constraints with the inaccuracy of floating-point arithmetic, methods based on interval arithmetic allow exact (interval) solutions over a much wider range of problems. Applications of interval-based programming extend the range of solvable problems from non-linear polynomials up to those involving ordinary differential equations.

In this text, we give an introduction to current approaches, methods and implementations of interval-based constraint programming and solving. Special care is taken to provide a uniform and consistent notation, since the literature in this field employs many seemingly different, but yet conceptually related, notations and terminology.

**keywords:** constraint programming, interval-based computation, interval consistency techniques

**Filtering algorithms for the Same and UsedBy constraints**

Nicolas Beldiceanu(Ecole des Mines de Nantes, Nantes Cedex, France) | Irit Katriel, Sven Thiel(Max-Planck-Institut fur Informatik, Saarbrucken, Germany) |

*X*and

*Z*such that

*|X| > |Z|*and assigns values to them such that the multiset of values assigned to the variables in

*Z*is contained in the multiset of values assigned to the variables in

*X*. Same is the special case of UsedBy in which

*|X|=|Z|*. We show algorithms that achieve arc-consistency and bound-consistency for these constraints.

**keywords:** arc-consistency, bound-consistency, constraint programming, filtering algorithm, global constraint, network flow, strongly connected component

**Message delay and asynchronous DisCSP search**

Roie Zivan, Amnon Meisels(Department of Computer Science, Ben-Gurion University of the Negev, Israel) |

**keywords:** distributed constraint satisfaction, search, distributed AI

<< Back