2020 (vol. 30) - Number 3

*M.A. Hammami, N.H. Rettab:*

On the region of attraction of dynamical systems: Application to Lorenz equations

*J. Rudy, J. Pempera, C. Smutnicki:*

Improving the TSAB algorithm through parallel computing

*Chiranjibe Jana, Madhumangal Pal , Guiwu Wei:*

Multiple Attribute Decision Making method based on intuitionistic Dombi operators and its application in~mutual fund evaluation

*S. Ogonowski, D. Bismor, Z. Ogonowski:*

Control of complex dynamic nonlinear loading process for electromagnetic mill

*N.A. Baleghi, M.H. Shafiei:*

An observer-based controller design for nonlinear discrete-time switched systems with~time-delay and affine parametric uncertainty

*Amine El Bhih, Youssef Benfatah, Mostafa Rachik:*

Exact determinantions of maximal output admissible set for a class of~semilinear discrete systems

*Archana Tiwari, Debanjana Bhattacharyya, K.C. Pati:*

Controllabilty and stability analysis on a group associated with Black-Scholes equation

*A. Sambas, I.M. Moroz, S. Vaidyanathan:*

A new 4-D hyperchaotic system with no equilibrium, its multistability, offset boosting and circuit simulation

*A.S.S. Abadi, P.A. Hosseinabadi, S. Mekhilef, A. Ordys:*

A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems

ACS Abstract:

**2006 (Volume 16)**

Number 2

**Principles of constraint systems and constraint solvers**

Thom Frühwirth(Faculty of Computer Science, University of Ulm, Germany) | Slim Abdennadher(Department of Computer Science, German University Cairo, Egypt) |

**keywords:** computational logic, executable specifications, rule-based programming, program analysis, algorithms

**An introduction to interval-based constraint processing**

Gerrit Renker, Hatem Ahriz(School of Computing, The Robert Gordon University, Aberdeen, UK) |

Constraint programming is often associated with solving problems over finite domains. Many applications in engineering, cad and design, however, require solving problems over continuous (real-valued) domains. While simple constraint solvers can solve linear constraints with the inaccuracy of floating-point arithmetic, methods based on interval arithmetic allow exact (interval) solutions over a much wider range of problems. Applications of interval-based programming extend the range of solvable problems from non-linear polynomials up to those involving ordinary differential equations.

In this text, we give an introduction to current approaches, methods and implementations of interval-based constraint programming and solving. Special care is taken to provide a uniform and consistent notation, since the literature in this field employs many seemingly different, but yet conceptually related, notations and terminology.

**keywords:** constraint programming, interval-based computation, interval consistency techniques

**Filtering algorithms for the Same and UsedBy constraints**

Nicolas Beldiceanu(Ecole des Mines de Nantes, Nantes Cedex, France) | Irit Katriel, Sven Thiel(Max-Planck-Institut fur Informatik, Saarbrucken, Germany) |

*X*and

*Z*such that

*|X| > |Z|*and assigns values to them such that the multiset of values assigned to the variables in

*Z*is contained in the multiset of values assigned to the variables in

*X*. Same is the special case of UsedBy in which

*|X|=|Z|*. We show algorithms that achieve arc-consistency and bound-consistency for these constraints.

**keywords:** arc-consistency, bound-consistency, constraint programming, filtering algorithm, global constraint, network flow, strongly connected component

**Message delay and asynchronous DisCSP search**

Roie Zivan, Amnon Meisels(Department of Computer Science, Ben-Gurion University of the Negev, Israel) |

**keywords:** distributed constraint satisfaction, search, distributed AI

<< Back