2021 (vol. 31) - Number 3

*Vanya R. Barseghyan:*

The problem of control of rod heating process with nonseparated conditions at intermediate moments of time

*Khadidja Bentata , Ahmed Mohammedi, Tarak Benslimane:*

Development of rapid and reliable cuckoo search algorithm for global maximum power point tracking of solar PV systems in partial shading condition

*Jakub Musial, Krzysztof Stebel and Jacek Czeczot:*

Self-improving Q-learning based controller for a class of dynamical processes

*Ramesh Devarapalli and Vikash Kumar:*

Power system oscillation damping controller design: a novel approach of integrated HHO-PSO algorithm

*T. Kaczorek:*

Poles and zeros assignment by state feedbacks in positive linear systems

*Saule Sh. Kazhikenova and Sagyndyk N. Shaltakov, Bekbolat R. Nussupbekov:*

Difference melt model

*R. Almeida and N. Martins, E. Girejko and A.B. Malinowska, L. Machado:*

Evacuation by leader-follower model with bounded confidence and predictive mechanisms

*B. Zhao and R. Zhang, Y. Xing:*

Evaluation of medical service quality based on a novel multi-criteria decision-making method with unknown weighted information

*Stefan Mititelu, Savin Treanta:*

Efficiency in vector ratio variational control problems involving geodesic quasiinvex multiple integral functionals

*D.K. Dash and P.K. Sadhu, B. Subudhi:*

Spider monkey optimization (SMO) – lattice Levenberg–Marquardt recursive least squares based grid synchronization control scheme for a three-phase PV system

*Suresh Rasappan and K.A. Niranjan Kumar:*

Dynamics, control, stability, diffusion and synchronization of modified chaotic colpitts oscillator

ACS Abstract:

**2004 (Volume 14)**

Number 2

**Using control theory to make cancer chemotherapy beneficial from phase dependence and resistant to drug resistance**

Marek Kimmel(Rice University, USA) | Andrzej Świerniak(Silesian University of Technology, Poland) |

**keywords:** optimal control, biomathematical models, cancer chemotherapy, bilinear systems, cell cycle dynamics.

**- norm computation for stable linear continuous-time periodic systems**

B.P. Lampe(University of Rostock, Germany) | M. Obraszov and E. Rosenwasser(St. Petersburg State University of Ocean Technology, Russia) |

*T*is the period of the system, and it operates only with matrices of finite dimension. An example is given, where the -norm is determined exactly, and the proposed method turns out to be superior to other known methods.

**keywords:** time-varying systems, periodic motion, Laplace transforms, Green functions, transfer functions, norms.

**A controllability problem for a class of uncertain - parameters discrete-time linear dynamic systems**

Krzysztof Oprzedkiewicz(University of Mining and Metallurgy, Poland) |

**keywords:** linear discrete-time systems with uncertain parameters, controllability.

**A note on zeros, output-nulling subspaces and zero-dynamics in MIMO LTI systems**

Jerzy Tokarzewski(Military University of Technology, Poland) |

*S(A,B,C)*the classical notion of the Smith zeros does not characterize fully the output-zeroing problem nor the zero dynamics. The question how this notion can be extended and related to the state-space methods is discussed. Nothing is assumed about the relationship of the number of inputs to the number of outputs nor about the normal rank of the underlying system matrix. The proposed extension treats multivariable zeros (called further the invariant zeros) as the triples (complex number, nonzero state-zero direction, input-zero direction). Such a treatment is strictly connected with the output zeroing problem and in that spirit the zeros can be easily interpreted even in the degenerate case (i.e., when any complex number is such a zero).

A simple sufficient and necessary condition of nondegeneracy is presented. The condition decomposes the class of all systems

*S(A,B,C)*such that

*B*

*0*and

*C*

*0*into two disjoint subclasses: of nondegenerate and degenerate systems. In nondegenerate systems the Smith zeros and the invariant zeros are exactly the same objects which are determined as the roots of the so-called zero polynomial. The degree of this polynomial equals the dimension of the maximal

*(A,B)*-invariant subspace contained in ker

*C*, while the zero dynamics are independent upon control vector. In degenerate systems the zero polynomial determines merely the Smith zeros, while the set of the invariant zeros equals the whole complex plane. The dimension of the maximal

*(A,B)*-invariant subspace contained in ker

*C*is strictly larger than the degree of the zero polynomial, whereas the zero dynamics essentially depend upon control vector.

**keywords:** linear systems, zeros, degeneracy, zero dynamics, Markov parameters, singular value decomposition.

**A time-varying switching plane design for variable structure control of the third order system with input constraint**

Andrzej Bartoszewicz and Aleksandra Nowacka(Technical University of Łódź, Poland) |

**keywords:** sliding mode control, variable structure systems, time-varying switching planes, switching surface design.

<< Back