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Admissible disturbances for perturbed nonlinear
discrete systems

MOSTAFA RACHIK, ABDESSAMAD TRIDANE, MUSTAPHA LHOUS and ZAKA TRIDANE

Consider the discrete perturbed controlled nonlineaesygiiven by

Xe(i+1) = AC(>I) + f(Gui +ox), 1 >0
x*(0) = yxo+ Y

and the output functioyf(i) = C>x&(i), i > 0, wheree= (v, W, ({i)i>0, (wi)i>0) is a disturbance
which perturb the system. The disturbaress said to bes-admissible if||y8(i) — y(i)|| < &,

Vi 2 0, where(y(i))i>o is the output signal corresponding to the uninfected syste set
of all e- admissible disturbances is the admissible s@). The characterization of (¢) is
investigated and practical algorithms with numerical datian are given. The admissible set
Sq(€) for discrete delayed systems is also considered.

Key words: discrete nonlinear systems, disturbances, asymptotidistaadmissibility,
observability, discrete delayed systems

1. Introduction

During the control of a system, we are always confronted ¢opilesence of some
undesirable parameters. To better avoid damages beingaabe caused by such per-
turbation on the evolution of a system, many approach haee beveloped (see [1],
[2], [4], [5], [6], [7], [8] and [10]). We contribute in this idection to fix a threshold of
tolerancee (¢ is chosen in function of the considered system ) and to ctexiae, on the
theoretic and algorithmic plan, perturbations of whichéfffect is under this threshold.
The linear case has been dealt by Rachik and al in [9], we hawvedaalt the bilinear
case (see [3]). So, as a natural continuation of what hasdmen[9] and [3], we devote
this paper to the study of nonlinear case. Moreover to therdifice of what has been
done in [9] and [3], we suppose in this work that the initiatetof the system is also
affected by a perturbation.
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In a precise manner, we consider here the controlled pedurnmnlinear system
defined by

Xe(i+1) = AE(>) + fF(Gui+w) , i >0 "
X*(0) =yxo + W
the corresponding output signal is
Ye(i)=Cx(i) , i>0 (2

whereA, C are respectively x n, px n matricesx®(i) € R" is the state variable; € R™
is the control variablef : R™ — R" is a continuous functiore= (y, ), (¢ )i>o, (& )i>o)
is an undesirable disturbance which affects the systemubkeaaf it's connections with
the environment. The output signal corresponding4o; =1,y =w =0foralli € N
is simply denoted byy(i))i>o, i.e.

y(i)=Cx(i), i>0 (3)

where(X(i) )i>o is the uninfected state given by
X(i+1)=Ax(i)+ f(w), i>0 4
X(0) =xp € R".

In all of this paper, we suppose that the disturbarnca$>o and({;)i>o susceptible of
infecting our system have a limited age, consequently ithalwork we suppose that

W= (W)iz0 € Upm={(W)izo/yi €R™, andy =0, Vi>1}

and
L= ()0 € RP = {(M)izo/A €R, and \i =1, Vi>J}

wherel and J are respectively the ages of disturban@@g; and (g );.
Thee-admissible se§(¢) defined by

Se) ={e=(,W,w{) e RxR"x upx &7/ [y°(i)—y(i)| <&, Vi=0} (5)

A summary of the contents of the paper reads as follows: Inigse@, after
introducing the notations we will use in the continuationtbé paper, we give the
propreties to characterize the set by functional inegealiand the condition under
which S(€) contains a neighborhood of zero. A condition for finite deti@ability
and an algorithmic procedure for the computationS(f) are given in section 3. To
illustrate this, we give some examples in section 4. Sed&iadevoted to the study of
the characterization of admissible disturbances for disalelayed systems.
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Example 1 As an example of the characterizationsaflisturbances we give the follo-
wing motivation. Let consider the discrete system desdrie

Xﬁrl = 02X|+(U|+(Q)2, Vi >07

X(e) = X+ w»
wherex;, U, in R, | = 0 the age of perturbation and the out put state is given by
V=%

Thee-admissible se§(€) is defined by
S(e) = {e= (W, @) € R/ y(i) —y(i)| <&, Vi>0}
where the output signal correspondingete: (), w) = 0 is simply denoted byy(i))i>o
Yi=X ,i>0 (6)
and(x)i>o is the uninfected state given by

{mlzo.z>q+ui2, i>0 @)

X(0) =% € R.
We deduce by simple calculous that
Se) = {e= (Y,w) € R?/ |Y| <&,|0.2¢+ (0o + Up)? —ud| <271 vix>1}).
If we takeug = 0.2 ande = 102 then, we deduce by

102} c
107221 vi > 1}

{(W,0) € R?/ 0.2+ (a0 +0.2)> ~ 0.04 <
{(W,0) € R?/ 0.2+ (a0 +0.2)* ~ 0.04 <
that

S(e) = {e= (Y, w) € R?/ || <102 |0.2¢ + (wo +0.2)* ~ 0.04/ < 10 2}.

The admissible set corresponding to previous system isigiveig. 1.

2. Preliminary results

It is easy to deduce from equatigh) that

i—1
Xe(i):AiXe(0)+ Ai_l_jf(ZjUj—i-(oj) ,Viz0
=
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Figure 1. The set (¢) corresponding to example 1

then
¥*(0) = y(0) = (y— 1)Cx(0) + Cy
and for everyi > 1, we have

Yo —y(i) = Cx(i) —Cx(i) .
= CA((y- 1)X(0)+LIJ)+ZOCAi""l(f(ZjUjerj)—f(Uj))-
=

If we introduce the signalE®);o € a1 defined by
E?+1 = f(ZjUj +0)j) —f(y), Vj=0
&= (y—1)x(0)+y

we easily establish that

(8)

(i)~ y(i) = 5 CAIg®
) =0) = 3 A%

Consequently, the s&e) of all disturbancee = (y,,{,w) € Rx R"x & x @/, can
be written as follows

Se) = {e= (vW.¢w)/|| Y CATIES| <&, Vi>0}.
J]=0

Sincewu? (Respg,®) can be identified t&R'$+Y by the canonical isomorphism
o: ud? — R

(Zi)i20 - (Zi)iTgs
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(Resp b: &S — Rr(5+1)>

(2)izo — (2)iks

where(z)/ is the vector oR"(*Y) given by

-
2
(Z)igcs=| eR' xR ...R
Zs s+1-times
then _
I . .
Se) ={e=(yW.q.w) ear/ | § CATIEf| <e, Vi>0}
j=0
with

M =Rx R"x R x R™I+D), (9)

In order to characterize the s8te) by a finite number of functional inequalities, we
rewrite S(¢) as follows

Se)=v ()N (g (20)
where :
v (e)={ec M/HZCAHE?H <e, Vie{o,...,max1,J)}} (11)
j=0
and i
w(g) = {ec M/HZCAHE?H <e, Vi=maxl,J)+1}. (12)
j=0

Since the sev’ (g) is characterized by a finite number of inequalities, our ctibje will
be the characterization of the get(g). We have

max(1,J)

W () {ecw /|IC % AIEe| <e, Vizmaxl,J)+1}
J:

max(1,J) _

{ecar | |[CAkH > AmaI)-ige| <e V> 0}
J:

= {eewm / |CA*LG(e)] <e, Vk>0}

whereg is the map defined by

(J+1)—times (I+1)—times

G: RxR"xRx...xRxR"x...xR" — R"

max(1,J) _
e:(yvzvyOV")vaZOv-'-azl) — Z) Ama)(lJ)iJE?
J:

(13)
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with (&5)j>0 given by

frn = flyjui+2z) = fu))
& = (-1x0)+z

Proposition 1 If A is Lyapunov stable(the characteristic roots of A satisie following
conditions :|A| < 1for everyA in the spectrum of A, and| = 1 impliesA is simple) then
0; €ints(g), whereO; = ((1,0n,1,...,1,0m,...,0m)) € M, 0, andOy, are the nx n-zero
and mx m-zero matrix respectively.

PROOF. We have
max(1,J) max(1,J)

vE)= () vE)> () v
i—0 i—0

where
max(1,J)

vie)={eca /|| 5 CATIE|<e}
]=0

and
~ max(1,J)
vie)={eear /| § CAIE? <e}.

|]=0
Moreover, we use the continuity dfto deduce that the map

max(l,J)
ecM — | CA™IES|
g

is continuous too.

Consequently; (€) is an open subset af = R x R" x R'*1 x R™J*1) which con-
tains the value  thus Q € int?’(€). On the other hand the Lyapunov stability Af
implies the existence of a constgnt 0 such that

|CA* x| < yl|x|| for every xe R" andk € N.
For every (t,x,y,z) € v and everyk € N we have
ICA G (t,x,y.2)| <VIlG (t, %,y 2]l
Moreover the continuity of; implies that
ve>0 dn>0, ||(t,xy,2)—01]|<n=|g(t,xy2| <eg/y

so for every(t,x,y,z) € B,,(01,n) (Wheres,, (01,n) is ball of §; in centre and radius)
and everyk € N we have

ICA*G (t,x.y,2)| <VilG (t,xy.2) <€,
hence 3,, (01,n) C W (¢) thus Q € intw (g). n
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3. The characterization of w (g)

In order to characterize the set (€) by a finite number of inequalities, we rewrite
it as follows

w(e) = {&= (v, W, (Gica: (W)ict) €M [ G(€) €T (e)} (14)

where _
7 () = {xe R"/||CA* x| <& , Vi>0}. (15)

For everyk € N, we define the seti(€) by
Ti(e) = {x e R"/||CATX| <& Vie {0,1,...,k}}, (16)

7 (g) is said to be finitely accessible if there exi&ts N such that7 (¢) = 7i(g), we
notek* the smallest integer such thate) = 7i(€).

Remark 1 We have
T (€) C T, (€) C T, (€) , VK1, ko2 € N such that k < ko. a7)
Proposition 2 7 (¢) is finitely accessible if and only i 1(g) = 7i(¢) for some i€ N

PROOF. If7 (¢) is finitely accessible, then the equality holds fori aH k*. Conversely, if
Ti+1(€) = 7i(g) for some € N, we deduce that;(€) is A-invariant (i.e A(7Zi(g)) C 7i(¢)
) which implies thatr; () is AX— invariant for everyk € N, and sor;(g) C 7 (g), finally
we apply Remark 1 to end the proof. 0

Using proposition 1 we can establish a first formal algoritordetermine the small-
est integelk* such that7i-(¢) = 7 (€) and consequently to characterize the Béte)
by

W (8) = Wie(8) = G (Tic (€))-

Algorithm 1

stepl: Sek=0

step 2: If7i;1(€) = 7ik(€) then sek* = k and stop,
else continue.

step 3: Replack by k+ 1 and return to step 2.

It is obvious that algorithm | is not practical because itsloet describe how the test
Ti+1(€) = Tk(€) is implemented, moreover it producksif and only if 7 (g) is finitely
accessible. In order to overcome this difficulty, Rt be endowed with the following
norm

X|| = max |x VX = (Xq,... R".
IXI = max ] . ¥x= (.. %) €
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The setzi(€) is then described as follows
Ti(e) = {x € R"/h;(CA*x) <0 for j=1,2,...,2p andi=0,1,...,k}
whereh; : RP — R, are defined for every= (x,...,Xp) € RP by
hom-1(X) =xm—¢, for me {1,2,... p},

hom(X) = —Xm—¢€, for me {1,2,... p}.

It follows from remark 1 that
Tir1(€) = Tk(€) <= Ti(€) C Ti+1(€)
o)
Tir1(€) = Tk(g) <= [Vx € 7k(€), Vj € {1,2,...,2p} hj(CA?x) < 0]

or equivalently
sup hj(CA"%) <0 Vje{1,2,...,2p},

XETK(E)

hence algorithm 1 can be rewritten as follows.

Algorithm 2

stepl: Lek=0;
step2: Foi=1,...,2p, do:
Maximize J;(x) = h; (CA*+2x)
hi (CAIX) < O,
{ i=1....2p,1=1,... ,k+ 1
Let J* be the maximum value af(x).
If J*<0, fori=1,...,2p then
setk* ;= k and stop.
Else continue.
step 3: Replack by k+ 1 and return to step 2.

(18)

(19)

(20)

Remark 2 The optimization problem cited in sté&pis a mathematical programming

problem and can be solved by standard methods.

It is clear that algorithm Il converges if and only if thereisgg an integek such
that7i,1(€) = 7ik(€), so it is desirable to establish simple conditions which entle set
w (g) (or 7 (¢g)) finitely accessible. Our main result in this direction is fb#owing

theorem.
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Theorem 1 Suppose the following assumptions to hold

i) Ais asymptotically stable}| < 1 for everyA in spectrum of A),

ii) the pair (C,A) is observablg[CT|ATCT|...|(AT)"~1CT] has rank n).
Thenw () is finitely accessible.

PROOF. Lex € 7, 1(€) then||CA*x|| <& Vie {0,1,...,n— 1} which implies that

C
CA n—times
. Axe Bp(0,€) x ... x Bp(0,€)
CAn—l

where
3p(0,€) = {x€ RP/|x| <&}.

n—times

HenceATAAxe AT (8,(0,€) x ... x Bp(0,€)) whereA is the matrix given by

C

CA
A= . € L(R"R").

CA.nfl
Consequently
n—times
(NTAA)(Th-1(€)) C AT (Bp(0,€) x ... x Bp(0,€)). (21)

n—times

So, for everyx € 7,_1(€) there existsze (Bp(0,€) x ... x B,(0,€)) such that
ATAAx= ATz which implies that

<ANTAAXAX> = < ANTZAX> |, VXE Ty 1(g). (22)
On the other hand the obsevability @, C) implies thatA" A is coercive i.e.
Ja>0 / <ATAxXx> > a|x|?, ¥xe R,
then it follows from(22) that
af|AX|? < (cstg[|AX| x [|Z]l, VX € Tn-1(€)

and consequently
|AX| < (cstgllz| , VX € Tn-1(€).
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n—times

Then, since(B,(0,€) x ... x Bp(0,€)) is a bounded set, we deduce the existence of a
constant > 0 such that

ATi(e) C Bn(0,r) ={xe R"/|x|| <r}, VYk>n-1
Using the asymptotic stability of, it follows that there exist&y; > n— 1 such that
[CARHL|| < ? hence
CATY(3,(0,r)) C Bp(0,€)

then
[CAT2x|| <& Wx € Ti(X)

which implies that

X € Tiy+1(€).
Consequently
Ty () C Tip+1(€)
Finally, we use proposition 2 to end the proof. O

4. Examples

In this section, we give two simple examples where we pretbensets (€).

Example 2Let A, C ande given by

Al (08 0 o (20) .,
1 07 11

Then, we use algorithm 2 to establish tkat= 3.
We suppose that: R — R?:x — (0,x+1),w =0, Vi>1,{ =1, Vi>0and
y=1.Then for allup € R, we have

S(1) = {(W1, W2, wp) € R®/ |Y1| <1 W+ <1, [—0.8P1+ 0.5, + 0+ 1| < 1}.

Example 3ForA=1, C=1, ande = 0.01, we obtaink* = 1. If we takef :R — R:
X — ¥, w=0, Vi>2,¢ =1, Vi>0andy=1,thenforup=0 andu; = 1, we have

5(e) = {(W,00,0n) € R*/ Y| <&, W+ | <t [P+ wh+ (wn+1)>— 1| <e}.
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Figure 3. The set (¢) corresponding to example 3

5. Admissible disturbances for discrete delayed nonlineasystems

This section is devoted to the characterization of admesdiisturbances for the
discrete delayed system given by

XE(i+1) = iOAle(i—j)-i-f(ZiUi'i‘wi), i>0
=

(23)
(k) = WBk+Wk for ke {—r—r+1,...,—1,0}.
The corresponding delayed output function is
S
Ye(i) = %ije(i —-j), i>0 (24)
=

whereAj € £(R"),C; € L(R",RP), r ands are integers such that<r, f : R" —
R" is a continuous function¥ = (W_,,W_r;1,...,W_1,W0)" € (RN)*! and I' =
(Yor,Yorit,---,Y-1,Yo) | € R™™! are a perturbations which infect the initial stfte-
(01,0 r11,...,8.1,60)".

As before we suppose thiindJ are respectively the ages &f= (j)i>o and w=
(w)i>0 and we investigate the s&i(€) of all e-admissible disturbances

e=(IW,{,w) e R x (RN x g xul,
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ie.
Si(e) = {e€ R™x (RN x =7 x up/[y*() — (i) <e, ¥i>0}

where(y(i))i>o is the output function corresponding to the uninfected rleid system,
that is

yi)= S Cxii—]), i>0 (25)
3¢

with ,
Xi+1) = YAXi—j)+fu), i>0
&

x(k) = 6 for ke {-r,—r+1,...,-1,0}.

(26)

Consider the new state variablk§(i) andX (i) defined inR""+% by
X&) = (1), —1),...x¢[i—r)", i=0
X(i)=x(@{),x(i—1),....xG—=r)", i=0
and define the matrik by

Ao A A
In On On

A=| o, . - b | e (R
Oh ... Onh Iy Oy

wherely is then x n-unit matrix, Oy is then x n-zero matrix. Then it is easy to deduce
from (23) and(26) that

{xe(i+1) = AX(i) + F(Qu + ) 27)
X80) = TBo+W
and ~
{X(i+1) —  AX(i)+F(u) 28)
X(0) = 6
where
F : R"— R0+
x— F(x) = (f(x),0,...,0)"
and

M8 = (YoB0,Y-10-1,...,Yr0 1) .
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Moreover, if we consider the matrix
C = (Co|C4|. .. |Cs|Opxnl - - - |Opxn) € £ (R"D RP)
then,(24) and(25) are given in terms of the new state variab¥%i) and X(i) by
ye(i) =CX®(i), Vi>O0, (29)

y(i) =CX(i), Vi>O0. (30)

Consequently, the set of tlseadmissible disturbances= (I', Y, {, w) is
-1 _
Su(e) ={een / HCZ)A'*’Ee,- I<e, Vi>0}
J:
where
N = Rr+1 « Rn(r+1) % Rm(|+1) % Rq(J+1)

and

{Nﬁl = F(u+w)—F(u) Vi=0 (31)

£ = (Me—0)+w.

As previously, we have
Su(e) = Va(e)(Wale)

where
Va(e) = fee a( / ||6§OA”'—J'€€,-H <& Vie{0L...max0)})
i=

and _
Wy(e) = {ee n / IIGZOE—J’E?,-H@, Vi > max(1,J) + 1}.
=

As in section 2 we have
Wy (e) = {e = ((6)-r<kso, (@i, (G)ica) €A/ [ICA G (e)] <& vk >0}
whereg is the map defined by

5 . 9\[ = Rn(r+1) X Rm(|+l) % Rq(J+1) N Rn(r+1)
max1,J) L
&= ((Xk)-r<keo; (Vi) -r<k<0: (Z)ir (tica) — Z (Aymaxid)-ige

i=0
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with

{iﬂ = F(zu+t)—F(u) Vi>O0
& = ((%0—DBo+Yo,(x1—1)0_14Yy_1,...,(xr — 1B +y_)".

In order to characteriZdj;(€), we introduce the following sets

74(g) = {x e R /|CA*+x| <&, Vi> 0}, (32)
7f(e) = {xe R+ /||ICA+ x| <& Vie{0,1,...,k}}, k>0, (33)

and B
Wi(e) = 6 H(7d(e)), k=>0. (34)

It is obvious that theorem 1 gives sufficient conditions tdkel& () finitely accessible.
In the following we focus our interest in finding sufficientnobtion adapted to discrete
delayed systems so thaf(e) be finitely determined. In our study we consider two cases

a) First casep = n (i.e. the observation space and the state space have the same
dimension).

b) Second casq < n( which is the usual case.)

First casep=n.

In this case everg; is ann x n matrix.
Proposition 3 Suppose the following assumptions to hold

i) Ci commutes with Afor alliand jsuchthaO<i<s, 0<j<r

r
i) || %Aizin < eforevery(z,...,z) € Bn(0,€) x ... x Bn(0,€)
i=

(r+1)—times

then W(¢) is finitely determined, moreoverd(¢) =W (€).
PROOF. Let = (Xg,X1,...,%) € R _If we set
X=CAx, k>0

then we have
hi=CZz, k>0 (35)

whereZ is such that
Z|)((:(Zk,2k7]_,...,2k7r), k>o
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and(z)k=o the unique solution of the system

r
J;J j (36)
z; =x ie{0,...,r}

Indeed, from(36), we easily establish that

ZI)<(—i-l = AZ, k>0 (37)
Z; = X

which implies thatzy , = A1y and the equality35). Sohy can be interpreted as the
output function associated to syst¢8Y). Using(35) to deduce that

s
=5YCjz_j, k=0
2,

hence fokk > r +1 we have

h = Cz_i=YYGC YA -
k % 2] % J% L—j-i-1 a8)
= 20A| ZOCJZK j—i-1= ZOAuhk i—1-

Letx e Tj(g). We have
|CAIK <&, Vke{0,1,...,r}

or equivalently
1l <& Vke{0,1,....r}. (39)

Applying (38) for k=r + 2, we have
_ rooo_
;(+2 = i;)Ai h;(+1—i-

Using hypothesis ii) an@39), we deduce that

I, 2]l <

which implies that
xe T (e)

and consequently
Ti(e) CTi(e)
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or

Hence

O
Second case < n.
Since eveng; is ap x n matrix, thenC; = G is an x n-matrix. If we introduce the
new observation variablgé(7) and y{i) defined by
9e(|) — ye(l) c Rn, y(l) — y(l) c Rn
ORn—p ORn—p
then clearly we have
S R S R
i) =S Cix(i—1), (i)=Y Cix(i— ). (40)
& &
Consequently the s&(¢) is given by
Si(e) = {eeal/Iy(i)—yl)ll<e, Vi>0}
= feea/[[ye()—¥() <e, Vi>0}

Finally, sinceC; are n x n-matrices, we apply the result established in the first case
(p=n), to the system$23) and(26) and output functior{40), to deduce the following
result

Proposition 4 Suppose the following hypothesis to hold

i) G commutes with Aforalliand jsuchthaD<i<s, 0<j<r.

r ~ ~
ii) HZ)AiZiH <eforall (zo,...,%) € Bn(0,€) x ... x By(0,€)
= (r+1)—times
(wheresn(0,€) = Bp(0,€) x Ogn-p C R")

then W(g) is finitely accessible, moreovery(¥) =W ().
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6. Conclusion

In this paper the problem of the characterization of the adiilie disturbances set
for perturbed nonlinear discrete systems is consideredefficient algorithm for con-
structing the admissible set is given and numerical siraulathave been done for some
examples. The case of controlled discrete-time delayemgshas also been investi-
gated. As a natural continuation of this work its interegttestigate the same problem
where the dynamics of the system is also perturbed, that snéarcharacterize the
admissibles perturbations from the system

{ (i +1) = (A+8)xe(i) + f (Lt +wy), i>0
x*(0) = yxo +

whered is a perturbation which enters the dynamic of system.

References

[1] L. AriF A. EL Jal: Strategic sensors and spy sensépl. Math. and Comp.
Sci, 4(4) (1994), 553-573.

[2] A. BENSOUSSAN On some singular perturbation problems avising in stdahas
control. Stochastic Analysis and Applicatiqrs(1984), 13-53.

[3] J. BouyAGHROUMNI, A. EL Jal and M. RaCHIK: Discrete systems with bilin-
ear disturbances. Rapport Interne No 09/98. LaboratoirEhéerie des Systémes.
Université de Perpignan, France.

[4] R.F. CURTAIN and K. G.OVER: Robust stabilisation of infinite dimensional sys-
tems by finite dimensional controllerSystem Control Letterg (1986), 41-47.

[5] J.L. LioNs: Sentinelles pour les systéemes distribués a données ine@mmgol-
lection R.M.A, Masson, Paris, 1992.

[6] M. MALABRE and R. RBAH: Structure at infinity model matching and distur-
bance rejection for linear systems with delaldgbernetika 29(5), (1993), 485-
498.

[7] L. PANDOLFI: Disturbance decoupling and invariant subspaces for dslaiems.
Applied Mathematics and Optimizatioct4 (1986), 55-72.

[8] A.M. PERDONand G. WNTE: The disturbance decoupling problem for systems
over a principal ideal domairRroc. New trends in systems and control theaty
(1991), Birkh&user, 583-592.



314 M. RACHIK, A. TRIDANE, M. LHOUS, Z. TRIDANE

[9] M. RACHIK, E. LABRIJI, A. ABKARI and J. BDBUYAGHROUMNI: Infected discrete
linear systems: On the admissible soure@gtimization 48, (2000), 271-289.

[10] G. ZaMES: Feedback and optimal sensitivity: model reference t@mstions,
multiplicative semi-norms and approximate inverdeEE. Trans Aut. Contr.26
(1981), 301-320.



