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From Continuous to Discrete Models of Linear
Repetitive Processes

ARTUR GRAMACKI, JAROSEAW GRAMACKI, KRZYSZTOF GALKOWSKI,
ERIC ROGERS and DAVID H. OWENS

Differential linear repetitive processes are a distinct class of 2D linear systems which pose
problems which cannot (except in a few very restrictive special cases) be solved by applica-
tion of existing linear systems theory, and hence by the use of many of the currently available
tools for computer aided analysis and simulation. One such problem area is the construction
of accurate numerically well conditioned discrete approximations of the dynamics of differen-
tial processes which could, as one example of a number of immediate applications areas, form
the basis for the digital implementation of control laws. In this paper, we undertake a detailed
investigation of the critical problems which arise when attempting to construct useful (for on-
ward asnalysis/design studies) discrete approximations of the dynamics of differential linear
repetitive processes and develop solutions to them. Numerical examples to support the results
obtained are also given using a specially developed MATLAB based toolbox.
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1. Introduction

The essential unique characteristic of a repetitive process (also termed a multipass
process in the early literature) can be illustrated by considering machining operations
where the material or workpiece involved is processed by a sequence of passes of the
processing tool. Assuming that the pass length « (i.e. the duration of a pass of the pro-
cessing tool) is finite and constant, the output, or pass profile, y.(¢), 0 < ¢t < «, (¢
being the independent spatial or temporal variable) produced on pass & acts as a forcing
function on the next pass and hence contributes to the dynamics of the new pass profile
Yet1(t), 0<E <, k2> 0.

Industrial examples of repetitive processes include long—wall coal cutting and metal
rolling operations [5], [31]. Also cases exist where adopting a repetitive process setting
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for analysis has major advantages over alternatives — so—called algorithmic examples.
This is especially true for classes of iterative learning control schemes [1] and iterative
solution algorithms for nonlinear dynamic optimal control problems based on the maxi-
mum principle [28]. In actual fact, iterative learning control as a subject area has its
origins in the control of robotic systems where the problem for the control algorithm is to
construct (or learn) the input that will generate the required output from the system under
consideration. The mechanism of learning is that of repeated trials and the updating of
the control inputs from trial to trial on the based of observed performance.

Publications dealing with robotics in an iterative learning control setting include [2],
[4], [33] and the relevant cited references and the recent workshops [3], [18]. Learning
optimal trajectories for non-holonomic systems, see, for example, [19], also has direct
robotics implications. In [21], [26] it is shown that the stability theory for differential and
discrete linear repetitive processes can be directly applied to iterative learning control
schemes.

Repetitive processes clearly have a two—dimensional, or 2D, structure, i.e. informa-
tion propagation occurs along a given pass (¢ direction) and from pass to pass (k di-
rection). They are distinct from, in particular, the extensively studied 2D linear systems
described by the Roesser [25] and Fornasini—-Marchesini [6] state space models and the
so—called 2D continuous-discrete linear systems (see, for example, [15]) by the fact that
information propagation along the pass only occurs over a finite and fixed interval — the
pass length a.

The basic unique control problem for repetitive processes is that the output sequence
of pass profiles can contain oscillations that increase in amplitude in the pass to pass di-
rection (i.e. in the k—direction in the notation for variables used here). Early approaches
to stability analysis and controller design for (linear single—input single—output (SISO))
repetitive processes and, in particular, long—wall coal cutting [5] was based on first con-
verting the underlying dynamics into those of an infinite-length single—pass process.
This resulted, for example, in a scalar algebraic/delay system to which standard scalar
inverse-Nyquist stability criteria could then be applied.

In general, however, it was soon established that this approach to stability analysis
and controller design would, except in a few very restrictive special cases, lead to in-
correct conclusions [20]. The basic reason for this is that such an approach effectively
neglects their finite pass length repeatable nature and the effects of resetting the initial
conditions before the start of each pass. To remove these difficulties, a rigorous stabili-
ty theory has been developed [20], [24] based on an abstract model in a Banach space
setting which includes all processes with linear dynamics and a constant pass length as
special cases.

The development of this stability theory has led to a major programme of research
aimed at producing a mature control systems theory for these processes for onward
translation (where appropriate) into numerically reliable and implementable control al-
gorithms/schemes. For a comprehensive treatment of the progress to date in this task
see [26]. One major area which arises here is that of constructing discrete approxi-
mations to the dynamics of differential linear repetitive processes which clearly must
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have the required level of accuracy and be useful for onward analysis/design studies. In
which context, it is already known from other work (see, for example, [12]) that (as ex-
pected intuitively) well known results/tools from the same area for standard, termed 1D
here, linear systems cannot be applied. To address this basic difficulty, this paper details
a range of discretization algorithms for differential linear repetitive processes (DLRP)
which meet the criteria of accuracy and usefulness in terms of onward use. To support
these algorithms, they have been included within a MATLAB based toolbox for linear
repetitive processes (which is continually being updated) and here we use this software
to give an illustrative example.

2. Problem formulation

The state space model of a differential linear repetitive process has the following
formover0 <t < «, k=0,1,...[28]

Tpya(t) = A\wk+1(t) + gukﬂ(t) + Eoyk(t)
Yk+1(t) = Cwgpp1(t) + Dugyr(t) + Doy (1) 1)

Here on pass k, 2 (t) is the n x 1 state vector, y(¢) is the m x 1 vector pass profile, u ()
is the [ x 1 vector of control inputs. To complete the process description, it is necessary
to specify the initial or boundary conditions, i.e. the state initial vector on each pass and
the initial pass profile. Here we assume the simplest possible form, i.e.

$k+1(0) == dk+1, k= 07 1, e
Yo(t) = f(t),0<t<q, (2)

where dj 41 is an n x 1 vector with constant known entries and f(¢) is an m x 1 vector
whose entries are known functions of .

Note. The process state space model (1) has the so—called unit memory property, i.e. it
is only the pass profile on the previous pass which (explicitly) contributes to the current
one. Non-unit memory linear repetitive processes are the natural generalization of (1)
where a finite number, say M > 1, of previous pass profiles (explicitly) contribute to
the current one. Such processes are not considered in this paper since the results given
for the unit memory special case generalize in a natural manner.

The basic problem considered here is as follows:
Given a repetitive process of the form (1) and (2), construct a discrete approximation of
the following formover 0 <p < a, k=0,1,...

Tri(p+1) = Azpyi(p) + Bugsi(p) + Boyk(p)
Yk+1(p) = Czryp1(p) + Dugy1(p) + Doye(p), 3)
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with boundary conditions
$k+1(0) = dk+lak:0717"'
yolp) = f(p),0<p<a 4)

The matrices in the discrete linear repetitive process state space model (3) are to be
computed from those of (1) by formulas determined by the particular numerical appro-
ximation method used. The approximate solution generated by (3) and (4), should be as
close as possible (in a well defined sense) to the exact solution obtained from (1) and
(2) (assuming that it is known or may be calculated with negligible errors). Moreover,
crucial system properties of (1) and (2), such as stability, should be preserved in (3) and
(4) or conditions (which can be verified numerically) under which this is true should
be available. (The reason for including explicit reference to the boundary conditions in
both the differential and discrete cases here is that it is known, see [22] and [26], that the
structure of the boundary conditions alone can destroy the stability properties of these
processes. For example, if a process described by (1) and (2) is stable, this property may
not hold if the pass state initial vector part of (2) is replaced by one which is an explicit
function of points along the previous pass profile [22]).

3. Discretization Algorithms

Differential and discrete linear repetitive processes have clear structural links with
1D differential and discrete linear systems respectively. Hence a natural starting point
for the development of discrete approximations to the dynamics of processes described
by (1) is to consider the (direct) use of well known 1D methods. Hence we begin our
analysis by considering, in turn, the Zero—Order-Hold (ZOH), forward, backward, and
trapezoidal rules respectively. Where possible, we will propose modifications to these
rules which improve their performance when applied in the repetitive process setting.
This is followed by a similar analysis for higher order methods. Finally, all methods
are compared both stand—alone and against each other on suitably chosen numerical
examples.

3.1. ZOH approximation

The ZOH method is a very well known and commonly used method in 1D systems
and gives very good/acceptable results in many cases. To apply this method to differen-
tial linear repetitive processes described by (1), however, it is necessary to assume that
both the input and pass profile vectors are stepwise, i.e.

uk(t+7) = uk(t) for 7€ [O,T) (5)
ye(t+71) = yk(t) for 7€0,7) (6)

where 7" denotes the sampling period. Note also that the assumption of (6) has no 1D
linear systems counterpart (in the current context, this is the first place we encounter
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the fact that linear repetitive processes cannot (in general) be studied by simply directly
applying existing 1D linear systems theory or analysis tools).

Given (5) and (6), application of the ZOH method to (1) yields the following discrete
time approximation for the current pass state vector

T T
zeip+1) = eMap(p) + /eATEdT ug+1(p) + /eATgodT Yk(p)
0 0
= Azgs1(p) + Bug1(p) + Boyk(p), (7
where (assuming Ais invertible)
A = GET
B = AYAT-1)B ®)

Bo = A\_I(GAT—I)B\().

The pass profile updating equation in (1) remains unchanged under this approximation
(its updating structure is discrete in the pass—to—pass direction).

Despite its appealing form and ease of numerical construction (a well defined al-
gorithm whose numerical properties are well documented), the stepwise assumption on
the entries in the pass profile vector may be too restrictive in many cases of practical
interest [8], [12]. This is due to the fact that pass profile vector (i) represents the output
of the repetitive process model and as such can not be fully controlled. Hence, a more
realistic assumption to invoke is that only the entries in the input vector are stepwise, i.e.
only (5) holds. In which case (7) is not valid and, as the numerical results later in this
paper will demonstrate, the ZOH approximation without (6) gives very poor results.

3.2. Improvements to the ZOH approximation

For calculating integrals in (7) we must assume that the entries in both input and
pass profile vectors are stepwise, i.e. (5) and (6) hold. As discussed in Section 3.1, this
severely restricts the use of this method for the subject problem of this paper. As an
alternative which retains the simplicity of the ZOH method, we can replace stepwise
approximation with trapezoidal approximation. In the 2D linear systems domain, this
approach was first proposed by [16], and Figure 1 summarizes the essential idea here.
Instead of (6), we now write

.
y(t +7) = ye(t) + [ye(t + T) —yw(t)]; for 7 €10, T), )
and it is easy to see that the solution of the first equation in (1) can be written in the
following general form
T T
Tpp(t+T) = eMay (1) + / e Buyy1 (t + 7)dr + /eATB\oyk(t + 7)dr. (10)
0 0
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Then, after substituting (9) into (10) we obtain

T T
T (t+T) = eaTka(t) +/6271/3\d7uk+1(t) +/egT§0dTyk(t)
0 0
r T
I t — t

0
and now solving (11) (see also [16]), we obtain the discrete state space model

pe1(p+1) = Azpi1(p) + Bugs1(p) + Boyk(p) + Biyk(p + 1)
Ukr1(p) = Cxpy1(p) + Dugy1(p) + Doyr(p), (12)
where

A = T
B = 121\71 -e‘aT—I] B\
_ Tl o~ A N
By = A! ?A]«%T—U—J]BO (13)
Bio= A AT LEedT I>] B

— ~

C = C, D=D, Dy=D,.

To remove the extra shifted term v, (p+ 1) in first equation of (12), define the state vector
W41 as

Wey1(p+1) = zpp1(p+ 1) — Biye(p + 1). (14)
uy
t 0 T T t
(a) (b)

Figure 1. (a) stepwise approximation, (b) trapezoidal approximation.
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Then, on writing (12) in terms of w, we obtain the following discrete linear repetitive
process state space model

wry1(p+1) = Awgyi(p) + Bugs1(p) + Boye(p)
Yr+1(p) = Cwgy1(p) + Dugy1(p) + Doyr(p), (15)

where
A:A, B:B, B():Bo—i-ABb C:67 D:ﬁ, Dozﬁo—i-a.él. (16)

Note also that the introduction of (14) means that the state initial vector sequence
{zk(0)}x>1 in the target discrete linear repetitive process state space model must be
replaced by

wi11(0) = zx41(0) — Biyi(0). 17

The stepwise assumption for input signal « (i.e. (5)) is exact in certain cases, e.g.
when the input signal is a step function, but it can also be approximated by the trape-
zoidal rule, i.e.

up(t +7) = ug(t) + [up(t +7T) — Uk(t)]% for 7 €[0,7), (18)

and (10) should be evaluated in a similar manner to that detailed above.

In 1D linear systems theory, a basic property of the ZOH approximation is that if the
original differential system is stable, i.e. all poles lie in the open left-half of the complex
plane, then the resulting discrete linear system is also stable, i.e. all poles lie inside the
unit circle in the complex plane. Next we ask the same question for the ZOH applied to
linear repetitive processes. For this we need some basic results from the stability theory
of linear constant pass length repetitive processes.

The stability theory [20], [28] for these processes consists of two distinct concepts,
termed asymptotic stability and stability along the pass respectively. In effect, asymp-
totic stability is a form of bounded-input bounded—output (BIBO) stability in the sense
that bounded input sequences (consisting of initial conditions, disturbances and control
inputs which enter on each pass) produce bounded sequences of pass profiles over the,
finite and constant by definition, pass length, where the bounded property is defined in
terms of the norm on the underlying function space. Also asymptotic stability guarantees
convergence in the pass—to—pass direction to a steady or so—called limit profile which, in
effect, provides information on "transient™ behaviour in the pass—to—pass direction.

In the case of the differential and discrete linear repetitive processes considered here,
the necessary and sufficient condition for asymptotic stability is that r(ﬁo) < 1and
r(Dy) < 1 respectively. Also if this property holds, the resulting limit profile is de-
scribed by a 1D differential (respectively discrete) linear systems state space model.
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Hence if the example under consideration is asymptotically stable its repetitive dyna-
mics can, after a "large number" of passes, be replaced by those of a 1D linear system
(with obvious implications in terms of the structure and design of control schemes for
these processes).

The fact that asymptotic stability property here is largely independent of the process
dynamics and, in particular, of the eigenvalues of the matrices A and A respectively, is
due entirely to the finite pass length (over a finite duration even an unstable 1D linear
system can only produce a bounded output), and means that it is possible for an asymp-
totically stable process to converge to a limit profile which is an unstable 1D linear
system (for examples in both cases see [28]). This situation can be prevented by stability
along the pass which demands the BIBO property uniformly, i.e. with respect to the pass
length «. Also asymptotic stability is a necessary condition for stability along the pass.

As in the 1D linear systems case with the ZOH approximation, we would ideally
wish to have the result that if the original differential process is stable (asymptotic or
stability along the pass) then so is the resulting discrete approximation. Failing that,
conditions under which the resulting discrete approximation is stable should be available.

In the case of the model of (15), it is immediate that this model could be asymptoti-
cally unstable (and hence unstable along the pass) even if the differential process from
which it was derived is asymptotically stable. This is due to the fact that in construc-
ting the discrete approximation the matrix 130 is mapped to 130 + (731. Hence we see
that preserving stability properties in the construction of discrete approximations to the
dynamics of differential linear repetitive processes is somewhat more involved (see also
later in this paper) than in the corresponding 1D linear systems case. This fact will also
arise in some of the other discretization methods considered in this paper.

3.3. Forward approximation

One of the simplest possible methods available for the general problem considered
in this paper is the forward difference approximation defined in terms of its action on a
signal z(¢) by

z(pT) = z[(p — DT] + Ti[(p — DT]. (19)
Application of this formula to the state equation in (1) yields
Tha1(p + 1) = 21 (p) + T[Azpr1(p) + Bugs1(p) + Boye ()], (20)

or, on also noting that the pass profile updating equation in (1) remains unchanged under
this approximation,

e (p+1) = [+ AT)zgy1(p) + BTugyr(p) + BoTyx(p) (21)
Yk+1(p) = Crpy1(p) + Dugy1(p) + Doye(p)- (22)

Hence, the discrete linear repetitive process approximation of the dynamics of processes
described by (1) is given by a model of the form (3) with matrices defined by

A=I+ AT, B=DBT, By= BT,
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C=C, D=D, Dy=Dy,. (23)

This resulting discrete approximation model is very simple but has the disadvantage that
very small discretization periods are required to obtain acceptable (in the sense of any
of the usual measures of the discretization errors) results. It does preserve asymptotic
stability (since Dy = f)o) but not stability along the pass. To establish this last fact, note
that a necessary condition for stability along the pass of (1) is that all eigenvalues of the
matrix A have strictly negative real parts and for (3) that r(A) < 1.

3.4. Backward approximation

The backward approximation method is defined in terms of its action on a signal

x(t) by
z(pT) = z[(p — V)T + Tz (pT), (24)

and applying this formula to the state equation in (1) we obtain

21 (p+1) = 21 (p) + T[Azp 1 (p + 1) + Bugr1(p + 1) + Boye(p + 1)) (25)

A key feature here is that (25) has extra shifted terms both in the current pass input
vector (ug+1(p + 1)) and the current pass profile vector (y:(p + 1)) (we will also see
such terms appearing in some of the other discretization methods considered later in
this paper). Also, unless these terms can be removed by suitable transformation(s), the
stability theory cannot be applied. Next we consider when such transformations actually
exist.

Consider now the case when (5) and (6) hold. Then we can write (25) in the form

e (p+ 1) = 2541 (p) + T[Azp 1 (p + 1) + Bugy1(p) + Bo, vk (p)), (26)

and this together with the unaltered equation for the pass profile vector updating leads to
the model of (3) with the matrices A, B, By and C, D, D, given by

A = [I-AT|!

B = [I—AT] 'BT (27)
By = [I—AT)"'B,T

C = C, D=D, Dy=D,.

Note here that since Dy = f)o, the resulting discrete approximation is asymptotically
stable provided the original differential process has this property. The fact that A ;AE
means that stability along the pass of (3) does not necessarily imply that the discrete ap-
proximation has this property. In fact, using results from [28], the discrete approximation
here is stable along the pass if, and only if, r(f)o) <1, r(A) <1,and

det(C/(z1,22)) £ 0, ¥ (21,2) € U, (28)
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where
In - ZlA —ZlBO

Cle1,2) = —zC I, —2zDy |’

(29)

and .,
U = {(zlaz) : |Z1| <L |Z| < 1}

In the case when (5) and (6) not hold, we have that
ohe1(p+1) = 21 (p) + T[Azg 11 (p+ 1) + Bug 1 (p+ 1) + Boyi(p + 1)), (30)
or
wr1(p) = w1 (p+1) — ATzp 11 (p+ 1) — BTuga(p +1) — BoTye(p +1). (31)
Now define the new state vector wy; as
Wgt1(p + 1) = Tp41(p)- (32)
Then
[ = AT)agr(p + 1) = BTupsr(p+ 1) + BoTys(p + 1) +win(p +1),  (33)
and hence

Thi(p+1) = [I—AT)  wesi(p+1) +[I — AT) ' BTug1(p + 1)
+ [I— AT 'BoTyr(p+1). (34)

Since all terms in (34) are expressed in terms of (p + 1), we also have that

2ei(p) = [I—AT) Ywyyr(p) + [I — AT) " BTug11(p)
+ [ — AT) ' BoTy(p), (35)

and substituting (35) into (32) gives

we(p+1) = [I—AT] “wis1(p) + [I — AT]) ' BTug 4 (p)
+ [ — AT ' ByTys(p), (36)

and the output equation of (1) becomes, on substituting (35),

ykt1(p) = C[I — AT wysr (p) + {C[I — AT) ' BT + D}ug1(p)
+ {C[I — AT\ 'ByT + Do}yi(p)- (37)

Hence the matrices in the discrete approximation (3) in this case are given by

A = [I- AT
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B = [I—AT] 'BT

By [[ — AT 'ByT

C ClI — AT]™! (38)
D = ClI-AT)"'BT+D

Dy = C[I— AT 'ByT + Dy.

The structure of these matrices in this case immediately shows that asymptotic stability
(and hence stability along the pass) of the original differential process does not guarantee
that the resulting discrete approximation has this property.

3.5. Trapezoidal approximation
This approximation is defined in terms of its action on a signal z(¢) as follows
T . .
o(pT) = ol(p — DT] + S[2(pT) + 2(p — DT]. (39)

Under the assumptions of (5) and (6), the dynamics of differential repetitive process
(1) can be approximated by a discrete linear repetitive process of the form (3) were the
matrices A, B, By, C, D, Dy are given by

B -~ T -~ -1
AT AT
A = |[I+=—||1-=—=
T 2
: ET: -
B = |I-= BT (40)
: ET: -
BO = I— T _/B\OT

C = C, D=D, Dy=Dy.

Note here that Dy = 130 and hence the discrete approximation is asymptotically stable
provided the original differential process has this property. Conditions for stability along
the pass of the discrete approximation can be obtained by applying (28) to the final state
space model.

As before, the stepwise assumption on the entries in the pass profile vector (equation
(6)) may be too restrictive in many cases of practical interest [12]. Hence, the more
realistic assumption is only to assume that the entries in the input vector are stepwise,
i.e. only (5) holds. In this case, applying the trapezoidal rule to (1) yields the following
discrete linear repetitive process state space model

Tpy1(p+1) = Azpii(p) + Bugyi(p) + Boyr(p + 1) + Boyk(p)
Ukr1(p) = Czpy1(p) + Dugy1(p) + Doyr(p), (41)



162 A. GRAMACKI, J. GRAMACKI, K. GALKOWSKI, E. ROGERS, D. OWENS

where matrices of the model are given in (40) with the exception that R is replaced by

B{, where

By = 3(By). (#2)

The novel feature of this model is that the state equation contains an extra term whose
index is shifted in the along the pass direction (y (p + 1)) and hence is closer to the
Fornasini—-Marchesini model [6] for 2D discrete linear systems recursive in the positive
quadrant.

To investigate this situation in more detail, it is first necessary to introduce the equi-
valent 2D Roesser-type model [25] description of the dynamics of a discrete linear re-
petitive process, where here we do this by first "forward shifting" the pass profile vector
using the following substitution (which is well known in 1D analysis)

yk*l(p) = Yk(p)a k > 07 0<1< «, (43)

and then "retarding" the pass index by setting [ := k+1. Also define the new state vector
Xi(p) as

Xi(p) = mi(p) — BoYi(p). (44)
Then it follows immediately that a discrete linear repetitive process state space model of
the form (41) has been transformed to the following form

Xi(p+1) = AX(p) + Bulp) + BoYi(p) (45)
Yiri(p) = CXi(p) + Du(p) + DoYi(p), (46)
where
By = AB)+ B}, (47)
Dy = Dy+CB) (48)

and the other matrices have not been detailed here as they are not relevant to the follo-
wing discussion.

The model of (45)—(48) (despite notational differences with the 2D systems litera-
ture) has the structure of a Roesser—type model. In the context of this paper, however,
the main conclusion arising from (47) and (48), is that use of the trapezoidal rule to ap-
proximate the dynamics of a differential linear repetitive process under the assumption
that only the entries in the input vector are stepwise does not, in general, mean that the
discrete approximation of a stable differential process (asymptotic or along the pass) will
also have this property.

A more detailed treatment on this model, together with supporting numerical exam-
ples, can be found in [10], [11], [12].
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3.6. Improved trapezoidal approximation

To avoid the disadvantages detailed above of the standard trapezoidal method applied
to linear differential repetitive processes, the following modification is proposed [10] (the
basic idea is similar to the one often used in 1D systems analysis).

First apply the trapezoidal rule described by (39) and, after rearranging the resulting
equation such that all (p 4+ 1) terms are on the left and all (p) terms on the right, we have

~ ~ ~

AT B,T BT
Tre1(p+1) — 7$k+1(1) +1) — Tyk(p +1) — TukH(P +1)

AT B,T BT
= zpy1(p) + T$k+1(10) + %?Jk(?) + TUHI(P), (49)

and define the new state vector w1 as

N AT BoT BT
wi1(p+1) = 2pi1(p) + - wk1 (0) + =54k (0) + —uea (), (50)
or
ar]™ ar]™ Byr
0
zpp1(p) = (I——| wen@)+ [ I——| ——v)
2 2 2
AT| BT
+ T TukH(P)- (51)
Substituting (51) into (50) now gives
wg1(p+1) =
ar]™ ar]™ Byr ar]™ Br
0
I—=—= - = == I-==| =
5 wg11(p) + 9 9 Yk (p) + 5 5 ug11(p)
~ ~ — ~ ~ ~ 1~
AT AT AT | BT AT | BT
| -== | == - =
+ 5 2 wi41(p) + 5 5 Uk (p) 9 5 ug11(p)
ByT BT
+—5 (p) + TUHI(P% (52)
or, after an obvious rearrangement,
AT AT |
wgr(p+1) = |1+ - I— - wk11(p)
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r ~ | —1
. AT -
BTug1(p) + |1 = —=|  BoTyr(p). (53)

The pass profile vector updating equation in this case is given by

AT
J— =
+ 2

-~ - r ~ N 71 ~
~ AT ~ o~ AT BT
yk(p) = C|I— b8 wr1(p) +{D+C |1 — BN N up+1(p)
Ar| 7 Byr
+ DO +C|I—- T % yk(p)7 (54)

and, finally, the matrices defining the discrete linear repetitive process state space model
approximation of the differential process in this case are given by

A= [+ 48|24
2 2
- T
B = [1-4L| Br
2
-
By = I—% BT (55)
- -1
¢ = ¢lr-AL
2
ar| ' Br
D = D+C|I-—|
~ 1 ~
Dy = Dy+C I—% Bg—T

Note also that the introduction of (50) means that the state initial vector sequence
{zk(0)}x>1 in the target discrete linear repetitive process state space model must be
replaced by
AT BoT BT
wg+1(0) = zk41(0) — 7$k+1(0) - %yk(o) - 7uk+1(0)- (56)

The model defined by (53) and (54) does not require the step—wiseness assumptions
(5) and (6) and does not have any advanced terms, such as those in (41), which is a
main advantage of this approach. Note also that [y # f)o, and hence is not guaranteed
that stability properties (asymptotic and along the pass) which hold for the differential
process will also be present in the resulting discrete approximation.
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3.7. Higher order approximation

In order to improve discretization quality (in the sense of discretization errors), this
section considers the use of a higher order, single step method of numerical integration
[17], [29]. One particular option here is the following defined which is defined in terms
of its action on a signal z(¢) by

2
ellp + 1T) = 2(p) + L [{T) + blp + DT) + 1o [BT) — bp+ DT). (57)

Application of this method to (1) yields

Tr1(p +1) = 21 (p) (58)

T ¢~ ~ ~ ~ ~ ~
+5 { Ak 1 (p4+1)+ Bug 1 p +1)+ Boys (0+-1) + v (p) + B2 () + Bown (p) |
T2

— 35 { A1 (o4 D+ Bitgi (p+ D+ Boie(p+ ) = A1 () Bt 41(p) ~ Boiep) } -

Assuming also that the derivatives of the entries in the state and pass profile vectors are
step-wise functions, i.e. the input and pass profile vector entries are piece-wise linear
functions, enables us to rewrite (58) in the form

Trr1(p+1) = T 11(p) (59)

T ¢~ ~ ~ —~ ~ ~
+5 { Awkr1 (p4+1)+ Bug 1 (0+1)+ Boys (0+-1) + v (p) + B2 () + Bown (p) |

T? |+, 7
+ﬁ {A$k+1(p) - A$k+1(p + 1)}

and on using (1) we obtain

Trr1(p+1) = T 11(p) (60)

T ¢~ N N N N N
+5 {Al‘kﬂ(;ﬂ +1)+Buk+1(10+1)+Boyk(10+1)+A$k+1(10)+Buk+1(p)+30yk(p)}
T2

+35 { A2er1(p) + ABoyi(p) + ABupsa (p) — A1 (p+1) = ABoyi(p + 1)

— ABugy1(p + 1)} :

Finally, from (60) we obtain the following discrete model

A1k 11(p) + Brugs1(p + 1) + Baugy1(p)
+  Bowyk(p + 1) + Boayk(p) (61)
Ukr1(p) = Cxpy1(p) + Dugyi(p) + Doyr(p), (62)

Trp1(p + 1)
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where
r ~ -1 r ~
4~ 7 ATJr,PT2 I+AT+22T2
L= 2 12 2 12
_ N N 1-1 r ~ ~—
B o~ |[_AT . A*T? BT  ABT*
L= 2 12 2 12
r ~ ~ n 71 r -~ o~ A~
B - |_AT . A*T? BT ABT? (63)
2= 2 12 2 12
r ~ ~ n 71 r -~ A~
B — |7 AT N A%T? BT AByT?
01 2 12 2 12
r 9-1r~ ~~
s _ |, AT N A27? B,T N AB,T?
02 2 12 2 12

C = C, D=D, Dy=D,.

3.8. Improved higher order approximation

In the model (61) there two additional terms relative to (3), i.e. w.1(p + 1) and
yr(p + 1). To remove these, we can apply a similar approach to that used for the trape-
zoidal method of Section 3.6. In particular, first note that (60) can be written as

AT BT BT A27?
Tpy1(p+1)— 7$k+1(P+ 1)— %yk(p—i— 1)— 7uk+1(10+ 1)— B Try1(p+1)
ABT? ABT? AT B,T
- yk(p+1) — upr1(p+1) = p41(p) + —2p1(p) + ——vr(p)
12 12 2 2
BT A27? AB,T? ABT?
— . 64
+= ug+1(p) + 12 zi(p) + D yr(p) + D) ug41(p) (64)
Then introducing the new state vector wy; as
~ AT BT BT
wrpi(p+1) = zppa(p) + 7$k+1(10) + Tyk(P) + 7uk+1(P)
A2T? AB,T? ABT?
+ k) o) + - wka ), (69)

the discrete approximation in this case has the form of (3) with

A = QP
BT ABT?
B = QPR+ —+—7
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ByT AB,T?

B PS + 9%
0 QPSS+ ——+—5
C CP (66)
D D+ CPR
Dy Dy + CPS,
where
AT AT
P = |1-Z—4
2 12
[ AT AT
- a4t 67
Q +t5+ 7 (67)
BT ABT?
R = |=2=_
2 12
¢ [ByT AB,T?
- 2 12

Note also that the introduction of (65) means that the state initial vector sequence
{zk(0) }x>1 in the target discrete linear repetitive process state space model must be
replaced by

AT A2 BT ABT?
wi1(0) =L = —+ 5| wr1(0) = | = = =5 | ur+1(0)
ByT  AB,T?
— |y ). (68)

Here again Dy # f)o, and hence stability properties (asymptotic and along the pass) of
the original differential process are not guaranteed to be present in the resulting discrete
approximation.

4. Numerical examples

In this section we give two numerical examples in order to compare discretization
methods detailed in Section 3. In this context, note that it is possible to display infor-
mation concerning the output from discrete linear repetitive processes under a number
of headings, where here a key feature of interest here is clearly the approximation er-
rors introduced by a use of a particular discretization method. Here we will present the
simulation results under the following categories:
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1. In absolute terms where we will use 3—dimensional plots.

2. As a function of the sampling period (7°) or as a function of a particular discretiza-
tion method used. In this case we will use 2—dimensional plots.

In the 3—dimensional plots we graph absolute errors, i.e. the curves generated by

Yk () == |gk(p) — gk (p)l, (69)

where g (p) is the solution obtained from a specified discretization method and y(p)
is the (assumed exact) solution calculated by direct solution the differential equation
which defines the differential repetitive process under consideration. This is done by the
use of the core MATLAB ODE (Ordinary Differential Equations) solvers called from a
specially developed MATLAB based toolbox for the control related analysis of repeti-
tive processes (see [30], [32] and [10] and the next two sections respectively for more
details).

In the case of the 2-dimensional plots, we use (in Euclidean norm terms, i.e. || - |b),

the quantity
{11 = willa )

where y,’;ef denotes the so—called reference vector, i.e. the pass profile of the differential
process and ;" denotes the output of the resulting discrete equivalent process obtained
by the use of a discretization method (denoted by m).

The first example we consider is the case when the matrices in (1) are defined by

70
k=0,1,..." (70)

R 0o 1 0 o [roo0] _ 100
A= 0 0 1 |,B=]020|,B=|010],

—24 =26 -9 0 0 3 0 01
[200] _ JOOO] _ -01 0 0
C=l010|,D=|000]|,Dy=| -1 06 0 |, (71

0 01 0 00 1 1 -0.1

with boundary conditions
2p1(0) = 1, k>0
231(0) = 0, k>0
2p1(0) = 1, k>0 (72)
yo(t) = 1,0<t<2
ya(t) = sin(2rt/a), 0 <t <2
ya(t) = 0,0<t<2,
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= 1,k>1,0<t<2
t) = 0,k 0<t<2. (73)

\VARV}
VANV
NN

b

Note. The superscript in the variables on the left—hand sides of these last two equations
denote the particular channel in the state, pass profile and control input vectors respec-
tively and we continue to use this notation where appropriate in the remainder of this
paper.

One key performance measure for these approximations is their numerical accuracy.
For example, it has been shown elsewhere that for discrete linear repetitive processes it is
possible to construct an equivalent 1D linear systems state space model of the dynamics
of these processes, which (as one immediate use) can be used to study certain physically
based definitions of controllability for discrete linear repetitive processes. (see [8], [13],
[14], [27]).

In essence, this equivalent 1D model represents the dynamics of these processes by
a 1D discrete linear systems state space model of the following form where, unlike the
1D equivalent model for other classes of 2D linear systems (see [23]), the crucial feature
(in terms of its use in onward analysis) is that the vectors which define have constant
dimensions and the corresponding matrices have constant entries

Y(+1) = ®Y()+AU() + O(0)
X(l) = TY(l)+3U(l) + Uay(0), (74)

where
$l(0) = dl, l = 1,2,... . (75)

Suppose, therefore, that a particular discrete approximation of the dynamics of a
given differential linear repetitive process has been constructed and it is proposed to use
the 1D equivalent state space model for analysis. (Such productive use will clearly re-
quire a detailed analysis of the effects of discretization on the relevant systems theoretic
property of (1)). Then a possible drawback to this approach is that the dimensions of the
matrices involved could be "very high". This is because when we discretize an example,
the dimensions of the matrices ®, A, ©, ', %, W in the resulting 1D equivalent model
of the resulting discrete linear repetitive process will directly depend on discretization
period 1" used. To illustrate this point, note that if we discretize the process described
by (71)-(73) for T = 0.05 and T' = 0.01 respectively then in the resulting 1D equi-
valent model of (74), the dimensions of matrices ®, A, ©,T", 3, ¥ are (123 x 123) and
(603 x 603) respectively.

4.1. Description of Figures2 -5

Figure 2 shows the exact solution for channel number 3 in the pass profile vector of
the differential linear repetitive process described by (71)—(73) (here we use the expres-
sion "channel number 3" as a verbal description of the third entry in y (p)). A total of 26
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////// W%
0 < '
=20
40

points on pass 0 o passes

Figure 2. Exact solution for channel number 3 of the pass profile vector generated by (71)—(73).

passes (including the initial pass profile which is numbered by 0) are given in the plot,
and this solution is treated as the entry g (p) in (69).

Figure 3 shows a comparison of various discretization methods (in this case for dis-
cretization period 7' = 0.05) in the form of 3—dimensional plots of absolute errors (69)
for channel 3 of the pass profile vector of the process under consideration.

>From these plots, it is clear that the ZOH, forward and backward methods (detailed
in Sections 3.1, 3.3, 3.4 respectively) perform much more poorly than the other methods
of Section 3. Hence we conclude that these 3 methods should not be used for discretizing
repetitive processes. All of the other methods, coupled with the improvements developed
in Section 3, give much better results and are the recommended methods for the basic
problem considered here.

Another point to note here is that 2-dimensional plots, such as those of Figures 4 and
5, do not display this critical information concerning these "bad" or inaccurate methods.
Conversely, 3—dimensional plots are really only appropriate for an overall view of the
trends in the response of a repetitive process. In particular, such plots do not allow us
to read off the exact errors values — for this we need the more accurate 2—dimensional
plots.

Figures 4 and 5 have used (70) to calculate the norms of the errors. As the reference
signal y,’;ef the pass profile given in Figure 2 was used. Figure 4 shows the errors pro-
duced by given method with different discretization periods 7" as parameters, and Figure
5 shows errors under a given discretization period T' by different methods and clearly
the smallest errors result from using the higher order method (see Section 3.7). The next
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method which gives the smallest errors is the improved higher order method (see Section
3.8).

It is important to note that the improved higher order method produces practically
"flat" error curves on each pass, whereas the higher order method gives very "uneven"
error curves. This behaviour is clearly visible on comparing the plots in Figures 4c, 4d
and 5a — 5d for the example considered here. As the period 7" decreases (as in Figure
5f where T' = 0.0025) all the methods, except the trapezoidal one, exhibit very similar
performance and in this case the improved trapezoidal approximation, as the simplest
to implement numerically, is probably the best choice. For long discretization periods
(e.g. T =0.2,and T = 0.1 — see Figures 5a, 5b respectively), the higher order methods
are preferable. This is especially important in the context of constructing 1D equivalent
model which was briefly discussed in Section 4.

5. Verification of discretization results

All numerically based approximation results clearly must be verified. As discussed
above, verification can be undertaken using the MATLAB ODE solvers which have been
adopted as the basis for numerical work with differential linear repetitive processes (for
details, see [10], [30] and [32]). The solvers are based on some very accurate adaptive
methods for solving differential equations (i.e. methods where the discretization periods
are selected dynamically based on local numerical conditioning). As a result, differential
linear repetitive processes can be simulated numerically to any required accuracy (in
practice, the only limitation could possibly be the time required for completion of the
necessary calculations). Such a solution can be treated as an exact solution (factor (p)
in equation (69)).

It is important to stress the main difference between the process of numerical solution
of a differential equation and the process of discretization of a continuous—time model
to obtain its discrete—time counterpart. In the first case, the discretization period can be
adjusted according to the local numerical conditioning of the model and if the model is
numerically badly conditioned, the discretization period can be decreased. If, however,
the opposite is true, the discretization period can be increased to speed up the calculation
time. As a result, the mesh points are not evenly located.

In the case of the discretization procedure for a given differential linear repetitive
process state space model, we must choose the discretization period in advance and
then calculate the required discrete-time equivalent model (i.e. (3) and (4)). Next, the
resulting discrete—time model should be simulated and the results obtained compared
with the exact solution. If the resulting errors are not acceptable (in some appropriate
sense), a smaller discretization period should be chosen and the procedure repeated. This
process should then be repeated the required number of times to obtain the demanded
accuracy.
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The following question now arises: Is it possible to choose the discretization period for
constructing the discrete equivalent model based on the exact numerical solution of the
defining equations of a differential linear repetitive process?

In general, it is very difficult to give an exact answer to this question. A first attempt
could be to choose the smallest local discretization period returned by the MATLAB
ODE solver used. Then we can make the assumption that when discretizing a given dif-
ferential linear repetitive process model with such a discretization period (in seconds)
we will obtain the resulting discrete linear repetitive process state space model with
approximately the same accuracy. In practice, our experience has been that this assump-
tion leads to quite good results. It should be stressed, however, that in some cases this
approach cannot be used as the smallest discretization period chosen by the ODE solver
is so small that it has no practical relevance.

To illustrate the above approach, consider again the differential linear repetitive pro-
cess described by (71)—(73). Then on directly solving the defining equations in this case,
(for £ = 0,1,...,25) we obtain the statistics given in Table 1. Here we see that the
smallest and longest discretization periods are 7' = 1.0566 x 10~" and 7' = 0.056399
respectively (they are printed bold in Table 1). The first value is very small and from
practical point of view it is not possible to construct the resulting discrete linear repeti-
tive process state space model with such small discretization period. Hence we conclude
that the above idea cannot be applied to this particular example.

Detailed inspection of the plots in Figure 6 reveals a very irregular placement of the
mesh points at the beginning of the plots. Also the enlarged fragment of Figure 6, shows
the concentration of the mesh points and the value of 7' = 1.0566 x 10~" can be easily
recognized (Figure 6f). However, if we slightly perturb the process description, e.g. the
boundary conditions (72) and the input sequence (73), the final results are drastically
different.

To illustrate this last point, replace the boundary conditions and input sequence for
the example under consideration to (the system matrices are as before)

23,40 = 0, k>0

zj,1(0) 0, k>0

z3.1(0) 0, k>0 (76)
yo(t) = 0,0<t<2
ya(t) = sin(2rt/a), 0 <t <2
Yo (t) 0, 0<t<2,

and

up(t) 0, k>1,0<t<2
up(t) = 0, k>1,0<t<2 (77)
ui (t) 0, k>1,0<t<2
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Then direct solution of the new differential linear repetitive process state space model
gives the statistics of Table 2, where the shortest and the longest discretization periods
are T = 0.0023282 and T" = 0.041126 respectively (they are printed bold in Table 2).
This solution, in contrast to the previous one, can be quite useful in practice and here the
smallest discretization period has a practical meaning. In particular, detailed inspection
of the results in Figure 7 reveals a slight irregular placement of the mesh points at both
the beginning and at the end of the plots, but this irregularity is not as large as in Figure
6. In Figures 7a, 7b, the complete curves are given and Figures 7c—7f show the enlarged

counterparts respectively.

pass no. min. T max. T pass no. min. T max. T
1 1.0566e-007 | 0.044160 14 2.061e-007 | 0.032488
2 1.5849e-007 | 0.046186 15 2.057e-007 | 0.03238
3 6.3396e-007 | 0.051286 16 2.0546e-007 | 0.032596
4 1.0225e-006 | 0.051212 17 2.0532e-007 | 0.032844
5 3.9376e-007 | 0.056399 18 2.0523e-007 | 0.039174
6 2.8787e-007 | 0.053819 19 2.0518e-007 | 0.033189
7 2.4786e-007 | 0.051949 20 2.0515e-007 | 0.033247
8 2.2878e-007 | 0.046634 21 2.0513e-007 | 0.033265
9 2.1868e-007 | 0.044147 22 2.0512e-007 | 0.035585
10 2.1304e-007 | 0.039722 23 2.0511e-007 | 0.033249
11 2.0979e-007 | 0.041464 24 2.0511e-007 | 0.033233
12 2.0789e-007 | 0.038090 25 2.0511e-007 | 0.033742
13 2.0677e-007 | 0.037715

Table 1. Statistics of the numerical solution of the process described by (71)-(73).

pass no. min. T max. T || pass no. min. T max. T
1 0.0042412 | 0.031965 14 0.0029983 | 0.023200
2 0.0042405 | 0.037218 15 0.0031696 | 0.024512
3 0.0042406 | 0.031985 16 0.0052475 | 0.023731
4 0.0042421 | 0.034013 17 0.0062074 | 0.024763
5 0.0042452 | 0.035007 18 0.0074497 | 0.025614
6 0.0026951 | 0.032371 19 0.0027985 | 0.020193
7 0.0041733 | 0.041126 20 0.0046194 | 0.020061
8 0.0051301 | 0.035603 21 0.0059278 | 0.026259
9 0.0057663 | 0.034873 22 0.0023282 | 0.018170
10 0.0032139 | 0.033368 23 0.0071430 | 0.025967
11 0.0031260 | 0.027997 24 0.0102280 | 0.022779
12 0.0030852 | 0.029754 25 0.0046091 | 0.024328
13 0.0030383 | 0.028869

Table 2. Statistics of the numerical solution of the process described by (71), (76), (77).
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.. continuation from the previous page
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Figure 3. Comparison of nine different discretization methods. Figures (a)—(i) show the absolute error in
the same channel between the exact solution and the given method with T = 0.05.
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Figure 4. Error for a given discretization method and different discretization periods 7' for channel number

3 of the pass profile vector.
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Figure 6. Placement of the mesh points during the numerical solution of the differential linear repetitive
process described by (71)-(73).
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6. MATLAB based toolbox

In practical applications it is essential to have possibility of fast analysis (in various
aspects) of a given repetitive process. This includes such tasks as:

1. convenient data input facilities of all model matrices, control inputs and ini-
tial/boundary conditions,

2. construction of discrete approximations of the dynamics of the specified differen-
tial process,

3. checking its basic system properties (e.g. stability),

4. numerical simulation of the process dynamics together with appropriate graphical
display facilities for the results.

The development of a MATLAB based toolbox for linear repetitive processes is on—
going and in this section we detail some basic features of its construction and illustrate
some of its current features.

6.1. General Features

The core of this toolbox provides the following classes of functions:

1. Generally Applicable Functions — essentially all the necessary inputs (e.g. control
inputs, initial conditions, initial pass profile, the matrices defining a state space
model, discretization period, etc.) are prepared manually by the user before im-
plementation using a given function. The implementable functions are, of course,
"very similar" to those found in standard MATLAB toolboxes.

2. A User Friendly Graphical Tool — this has been designed to run within MATLAB.
During operation, it is possible, for example, to modify parameters in the model
being simulated and view 2D and 3D plots of, say, the resulting sequence of pass
profiles.

6.2. Toolbox - Basics and Applications

Figure 8 shows the initial window of the toolbox which, in addition to data input
facilities, is also the starting point for all other windows (modules) of the toolbox.

It is possible to select system inputs, states and initial pass profiles either from some
predefined sets (for example a step input is represented by "111-111-111" or a "sine
wave" as an initial pass profile) or any other user prepared values from the MATLAB
workspace (checkbox "User defined™). Also (in addition to the most simple form) it is
possible to simulate the response of a given example with so—called dynamic boundary
conditions [7] (checkbox "Use ext. init. cond.”).

One of the major features of the toolbox in its current form are routines for construc-
ting the discrete approximation of a differential linear repetitive processes that produce



FROM CONTINUOUS TO DISCRETE MODELS OF LINEAR REPETITIVE PROCESSES 181

their state space model matrices and the form of the boundary conditions (this feature has
not been used in this paper). Examples of its use in constructing discrete approximations
of a given differential process have been given earlier in this paper.

The toolbox contains a number of methods for displaying the response of a (diffe-
rential or discrete) process to a given input sequence, states and boundary conditions.
Figures 9a, 9b illustrate the 3D and 2D options for an example. In the 3D case, all passes
computed are displayed on one figure (which can become "rather uninformative" if the
number of passes is "large™.) It is also possible to interactively edit these 3D and 2D
plots, e.g. rotate it in any direction, display a selected set of pass profiles or points on a
pass, etc. In the 2D view option, only a selected number of passes can be displayed.

7. Conclusions

In the paper various methods for constructing discrete approximations of the dy-
namics of differential linear repetitive processes have been detailed. In such processes
only one of two independent variables is continuous and this may suggest that all that
is required here is direct application of discretization methods known from 1D systems
analysis. This statement is incorrect and in actual fact the clear 2D systems structure of
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Figure 8. The main navigation window of the MATLAB toolbox.
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repetitive processes leads to the need to either develop new analysis tools or, as is the
case with the construction of discrete approximations which is the subject of this paper,
undertake non-trivial extensions of currently available tools. Here a novel improvement
of classical trapezoidal and Zero—Order-Hold approximation methods has been develo-
ped. Also a higher order method, not commonly used in 1D systems, has been applied
to this problem and an improved version of it is developed.

All methods considered/developed here have been numerically compared. From
these studies, we conclude that a higher order method gives the smallest errors but its
more complicated (in relative terms) structure means that it is also the most demanding in
terms of the computation time required. Its improved version gives slightly worse results,
but the discretization errors are practically "flat" on each pass. An improved trapezoidal
method can be seen compromise between relatively small discretization errors and com-
putational simplicity. As the period T decreases all methods of practical importance give
essentially the same accuracy and since an improved trapezoidal approximation is nu-
merically the simplest to implement, this is the best choice under this measure of relative
performance.

As a final point, note again that in most cases a stable (asymptotic or along the
pass) differential example does not necessarily lead to a discrete linear repetitive process
state space model with the same stability properties, although in all cases it is possible
to write down conditions under which the resulting discrete process is stable (asymp-
totic and along the pass).This strongly suggests that there will be non-trivial problems
to solve when considering the effects of the approximation process on key systems the-
oretic properties of differential linear repetitive processes, e.g. when considering digital
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implementation of (suitably structured) control laws. Progress in these and other areas
ill be reported in due course.
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