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3-D objects motion estimation based on Kalman Filter
and BSP Tree Models for Robot Stereo Vision

VINCENZO LIPPIELLO, BRUNO SICILIANO and LUIGI VILLANI

The problem of the real time estimation of the position and orientation of moving objects
for position-based visual servoing control of robotic systems is considered in this paper. A
computationally efficient algorithm is proposed based on Kalman filtering of the visual mea-
surements of the position of suitable feature points selected on the target objects. The efficiency
of the algorithm is improved by adopting a pre-selection technique of the feature points, based
on Binary Space Partitioning (BSP) tree geometric models of the target objects, which takes
advantage of the Kalman filter prediction capability. Computer simulations are presented to test
the performance of the estimation algorithm in the presence of noise, different types of lens
geometric distortion, quantization and calibration errors.

Key words: vision, robot manipulators, visual servoing, visual tracking, Kalman filter,
Binary Space Partitioning tree

1. Introduction

The effectiveness and autonomy of a robotic system operating in unstructured envi-
ronments can be significantly enhanced if a vision system based on one or more cameras
is adopted to achieve direct measurements of the state of the environment and of the task
in progress. Visual measurements can be directly used to perform closed-loop position
control of the robot end-effector, usually denoted visual servoing control [1].

Visual servoing techniques can be grouped into two categories: Those performing
position-based control and those performing image-based control. The control tech-
niques belonging to the first category make use of a tracking error defined in the cartesian
space [2]; those belonging to the second category make use of a tracking error defined
in the image space and, differently from the position-based control, do not require cali-
bration of the vision system [3].

One fundamental issue of position-based control is the real time estimation of the
pose, i.e. the position and orientation trajectory, of known target objects. Typically, a
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visual system based on one or more cameras is used to measure the position of suitable
feature points selected on the target objects.

Visual measurements are usually affected by significant noise and disturbances due
to temporal and spatial sampling and quantization of the image signal, lens distortion,
etc., which may produce large errors. If a sequence of images is available, the extended
Kalman filter can be effectively adopted to improve estimation accuracy [2, 4]. In fact,
Kalman filtering offers many advantages over other estimation methods, e.g., temporal
filtering, recursive implementation, possibility of realizing a proper statistical combi-
nation of redundant measurements, ability to change the measurement set during the
operation. Also, the prediction capability of the filter allows setting up a dynamic win-
dowing technique of the image plane which may sensibly reduce processing time.

It should be pointed out, however, that the algorithms based on Kalman filter usually
require high computation time which increases with the number of feature points. The
adoption of suitable algorithms for the selection of an optimal subset of feature points at
each sample time may be useful to reduce the computation burden but may be inadequate
in case of target objects with a large number of feature points [5, 6].

In this paper, the extended Kalman filter is adopted for the real time estimation of the
pose of moving objects using a sequence of images captured by a stereo camera system.
The systematic procedure presented in [7] is used for the case of � video cameras fixed
in the workspace. Thanks to a suitable definition of the output equations of the Kalman
filter, the algorithm provides the estimate directly in the base frame, without requiring
any additional frame transformation.

The estimation algorithm is improved in this work by adopting an efficient method
of pre-selection of the feature points based on Binary Space Partitioning (BSP) trees
for representing the geometry of the target objects [8]. In particular, the prediction of
the objects pose provided by the Kalman filter is used to reconstruct a 2D model of the
visible parts of the objects on the image plane of each camera. This allows to identify
all the feature points visible at the next sample time, which can be input to a standard
algorithm for optimal points selection and/or to a dynamic windowing algorithm. The
proposed pre-selection algorithm can be used also in the case of objects and obstacles
with interposing parts. Differently from other algorithms (see [6] and references therein),
this method allows to recognize all the points of the surfaces of the objects which are
hidden to the camera or occluded by some other objects or obstacles of known geometry.

The effectiveness of the proposed approach is tested in a simulation case study. In
order to reproduce a real situation, the effects of spatial quantization and amplitude dis-
cretization as well as calibration error and imperfect lens distortion compensation are
rigorously taken into account in the model adopted for simulation.

2. Modelling

Consider a system of � video cameras fixed with respect to a base coordinate frame
D–�+-. The geometry of the system can be characterized using the classical pinhole
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Figure 1. Reference frames for the �-th camera and the object using the pinhole model.

model, described in Fig. 1. A frame D��–���+��-�� attached to the �-th camera (camera
frame), with the -��-axis aligned to the optical axis and the origin in the optical center,
is considered for each camera. In the following, a superscript will be used to denote the
reference frame of a variable, when different from the base frame.

The sensor plane is parallel to the ���+��-plane at a distance -���
 along the -��-axis,
where ���
 is the effective focal length of the camera lens, which may be different from
the focal length ���. The image plane is parallel to the ���+��-plane at a distance ���

along the -��-axis. The intersection of the optical axis with the image plane defines the
principal optic point D���, which is the origin of the image frame D���–������ whose axes
��� and ��� are taken parallel to the axes ��� and +��, respectively.

A point 	 with coordinates $�� � ���� +�� -���� in the camera frame is projected
onto the point of the image plane whose coordinates can be computed with the equation�
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which is known as perspective transformation. A spatial sampling can be applied to the
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being �/��� 3��� �� the coordinates of the point D��� whereas  ��� and  ��� are the row and
column scaling factor, respectively.

Without loss of generality, the case of a single moving target object is considered.
The position and orientation of a frame attached to the object D!–�!+!-! with respect
to the base frame can be expressed in terms of the coordinate vector of the origin %! �
��! +! -!�

� and of the rotation matrix �!�&!�, where &! � �2! E! F!�
� is the

vector of the Roll, Pitch and Yaw angles. The components of the vectors %! and &! are
the six unknown quantities to be estimated.

Consider � feature points of the object. The coordinate vector $/ of the feature point
	/ (G � �� � � � ��) can be expressed in the base frame as

$/ � %! ��!�&!�$
!
/ � (3)

where $!/ is the coordinate vector of 	/ expressed in the object frame. The constant
vector $!/ is assumed to be known, and can be computed from a CAD model of the
object or via a suitable calibration procedure. Analogously, the coordinate vector of 	/
can be expressed in the �-th camera frame (� � �� � � � � �) as

$��/ � ��
���$/ � %���� (4)

where %�� and ��� are, respectively, the position vector and the rotation matrix of the
�-th camera frame referred to the base frame. The quantities %�� and ��� are constant
because the cameras are assumed to be fixed to the workspace, and can be computed
through a suitable calibration procedure [9].

By folding equation (3) into (4), the following �� equations are obtained

$��/ � ��
���%! � %�� ��!�&!�$

!
/�� (5)

that can be replaced into the perspective transformation (1) and into equation (2). There-
fore, a system of ��� nonlinear equations is achieved, which depend on the measure-
ments of the � feature points in the image plane of the � cameras, whereas the six
components of the vectors %! and &!, expressed in the base frame, are the unknown
variables. To solve these equation at least six independent equations are required.

The computation of the solution is nontrivial and for visual servoing applications
it has to be repeated at a high sampling rate. The recursive Kalman filter provides a
computationally tractable solution, which can also incorporate redundant measurement
information.

3. Extended Kalman filtering

In order to estimate the pose of the object, a discrete time state space dynamic model
has to be considered, describing the object motion. The state vector of the dynamic
model is chosen as the (��
 �) vector

� � ��! ��! +! �+! -! �-! 2! �2! E! �E! F! �F!�
�� (6)
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For simplicity, the object velocity is assumed to be constant over one sample period
) . This approximation is reasonable in the hypothesis that ) is sufficiently small. The
corresponding dynamic modelling error can be considered as an input disturbance '

described by zero mean Gaussian noise with covariance given by the (�� 
 ��) matrix
(. The discrete time dynamic model can be written as

�� � ����� � '� (7)

where � is a (��
 ��) block diagonal matrix of the form
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The output of the Kalman filter is the vector of the normalized coordinates of the �
feature points in the image plane of the � cameras
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By taking into account the equation (1), the corresponding output model can be written
in the form

)� � ����� � �� (9)

where �� is the measurement noise, which is assumed to be zero mean Gaussian noise
with covariance given by the (���
 ���) matrix �, and the function ����� is
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The coordinates of the feature points $��/ in equation (10) are computed from the state
vector �� via equation (5). Matrix � can be evaluated during the camera calibration
procedure or by means of specific experiments.

Since the output model is nonlinear in the system state, it is required to linearize the
output equations about the current state estimate at each sample time. This leads to the
so-called extended Kalman filter, which is an approximation of the true Kalman filter
algorithm.

The first step of the extended Kalman algorithm provides an optimal estimate of the
state at the next sample time according to the recursive equations

&������ � � &�������� (11)

*����� � �*��������
� �(���� (12)

where *����� is the (�� 
 ��) covariance matrix of the estimate state error. The second
step improves the previous estimate by using the input measurements according to the
equations

&���� � &������ �+��)� � �� &�������� (13)
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*��� � *����� �+�,�*������ (14)

where +� is the (��
 ���) Kalman matrix gain

+� � *�����,
�
� ��� �,�*�����,

�
� ���� (15)

being ,� the (���
 ��) Jacobian matrix of the output function

,� �
�����

��

&&&&
�� �������

� (16)

The analytic expression of ,� can be found in Appendix.
Notice that, in the case of multiple target objects, a Kalman filter for each object has

to be considered.

4. Feature points selection

The accuracy of the estimate provided by the Kalman filter depends on the number
of the available feature points. Inclusion of extra points will improve the estimation
accuracy but will increase the computational cost. It has been shown that a number of
feature points between four and six, if properly chosen, may represent a good trade-
off [4]. Automatic selection algorithms have been developed to find the optimal feature
points [6]. In order to increase the efficiency of the selection algorithms, it is advisable
to perform a pre-selection of the points that are visible to the camera at a given sample
time. The pre-selection technique proposed in this paper is based on BSP trees.

4.1. BSP tree geometric modelling

A BSP tree is a data structure representing a recursive and hierarchical partition of
a �-dimensional space into convex subspaces. It can be effectively adopted to represent
the 3D CAD geometry of a set of objects as reported in [8].

In order to build the tree, each object has to be modelled as a set of planar polygons;
this means that the curved surfaces have to be approximated as a set of planar polygons.

Each polygon is characterized by a set of feature points (the vertices of the polygon)
and by the vector normal to the plane leaving from the object.

For each node of the tree, a partition plane is chosen, characterized by a vector
normal to the plane; the node is defined as the set containing the partition plane and all
the polygons on it.

The node is the root of two subtrees: the front subtree corresponding to the subset
of all the polygons lying entirely to the front side of the partition plane (i.e. the side
containing the normal vector), and the back subtree corresponding to the subset of all
the polygons lying entirely to the back side of the partition plane.

The construction procedure can be applied recursively to the two subsets by choo-
sing, for each node, a new partition plane.
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Figure 2. Object and corresponding polygons

If a polygon happens to span the partition plane, it can be split into two or more
pieces and the resulting parts are added to the corresponding subsets.

The construction ends when all the polygons and their parts are placed in a node of
the tree.

The choice of the partition planes depends on how the tree will be used. For the
purpose of removing the hidden surfaces, it is appropriate to choose the partition planes
from the initial set of polygons.

As an example, consider the object represented in Fig. 2, which contains ten poly-
gons. A possible BSP tree representation of the object is reported in Fig. 3. A partition
plane is represented by the vector - � �� � 3 ��� of the coefficients of the equation
of the plane with respect to a base reference frame

�� � �+ � 3- � � � ��

where. � �� � 3�� is the unit vector normal to the plane. The root of the tree contains
the polygon number 10, which is on the first partition plane; the front subtree is empty
while the back subtree contains all the remaining polygons. The partition plane of the
back subtree contains the polygon number 1; the front subtree is empty while the back
subtree contains the polygons from number 2 to number 9. The construction ends when
all the polygons are added to the nodes of the tree. Remarkably, the partition plane
containing the polygon number 2 cuts polygons number 5 and 7 (notice that polygons
number 9 and 10, which also span the partition plane, were already added to previous
nodes of the tree), hence they have been split into two pieces each (see polygons number
5f, 5b, 7f, 7b in Fig. 4).
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Figure 3. BSP tree of the object.

4.2. Pre-selection algorithm

Once that a BSP tree representation of an object is available, it is possible to select
the feature points of the object that can be visible from a given camera position and
orientation by implementing a suitable visit algorithm of the tree. The algorithm can be
applied recursively to all the nodes of the tree, starting from the root node, by updating
a current set of visible feature points as follows.

For the current node, classify the camera position with respect to the current partition
plane: Front side, Back side, On the plane. Hence:


 Front: Visit the back subtree; process the node; visit the front subtree.


 Back: Visit the front subtree; process the node; visit the back subtree.


 On: Visit the front subtree; visit the back subtree.

When the algorithm processes a node, the current set of visible feature points is up-
dated by adding all the feature points of the polygons of the current node and eliminating
all the feature points of the set that are hidden by the polygons of the current node.

If a polygon is hidden to the camera (i.e., the angle between the normal vector to the
polygon and the camera --axis is not in the interval � � �#�� �#��), the corresponding
feature points are not added to the set.
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Figure 4. Case of partition plane splitting polygons number 5 and number 7

At the end of the visit, the current set will contain all the feature points visible from
the camera, while all the hidden feature points will be discarded. Notice that the visit
algorithm updates the set by ordering the polygons with respect to the camera from the
background to the foreground.

With reference to the BSP tree of Fig. 3, assuming that the camera is placed as the
observer of the image in Fig. 4, the sequence of the processed nodes is: 10, 8, 7b, 4, 5b,
3, 2, 7f, 6, 5f, 9, 1, where the polygons number 10, 8, 7b, 3, 7f result to be hidden.

The technique described above can be suitably exploited to set up a real time pre-
selection algorithm of the feature points to be localized on the cameras image planes,
using the prediction of the estimated pose of the target objects provided by the Kalman
filters.

5. Estimation procedure

In order to set up a procedure for the estimation of the pose of one or more target
objects, two different situations must be considered: The case of objects whose parts
cannot be interposed, and the case of interposing objects (e.g., a gripper grasping an
object).

In Fig. 5 a functional chart of the estimation algorithm is represented, that can be
used in the case of a single target object or multiple target objects whose parts cannot
be interposed. It is assumed that a BSP tree representation of each object is built off-line
from the CAD model. A Kalman filter is used for each object to estimate the corre-
sponding pose with respect to the base frame at the next sample time. The feature points
selection and windows placing operation, for each camera, can be detailed as follows:
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Figure 5. Functional chart of the estimation procedure for the case of non interposing objects.


 Step 1: According to the estimated distance of the objects from the camera, the
BSP tree representations of the objects are put in an ordered sequence, from the
farthest to the nearest.


 Step 2: The visit algorithm described in the previous Section is applied to each
BSP tree of the sequence to find the set of all the feature points that are visible
from the camera. For each object, a current set of visible points is updated, by
adding all the visible feature points of the current object and eliminating all the
feature points of the previous objects of the sequence hidden by the current object.


 Step 3: The resulting set of visible points is input to a standard algorithm for the
selection of the optimal feature points.


 Step 4: The location of the optimal feature points in the image plane at the next
sample time is computed on the basis of the objects pose estimation provided by
the Kalman filter.
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Figure 6. Functional chart of the estimation procedure for the case of interposing objects.


 Step 5: A dynamic windowing algorithm is executed to select the parts of the
image plane to be input to the feature extraction algorithm.

In the case of multiple target objects whose parts can be interposed, this procedure
may fail because the objects cannot be correctly ordered with respect to the distance
from the camera. This problem can be overcome at expense of the computation time by
adopting a different solution represented in the functional chart of Fig. 6.

As before, a Kalman filter is used for each object to estimate the corresponding pose
with respect to the base frame at the next sample time. Differently form the previous
case, a unique BSP tree representation of all the objects is built on-line, using the CAD
models of the objects and the estimation provided by the Kalman filters. Hence, for each
camera, the visit algorithm of the tree is executed once to find the set of all the visible
points. Then, the Steps 3, 4, and 5 are executed.

Notice that the procedures described above can be extended to the case of objects
moving among obstacles of known geometry; if the obstacles are moving with respect
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Figure 7. Position and orientation of the three cameras with respect to the base frame.

to the base frame, the corresponding motion variables can be estimated using Kalman
filters.

6. Simulation

The effectiveness of the estimation algorithm has been tested in simulation case stud-
ies for a stereo vision system composed by three cameras with a 50 Hz sampling rate.
The cameras are fixed with the workspace and their position and orientation with re-
spect to the base frame is presented in Fig. 7. The optical axes of the three cameras
are on a plane parallel to the �+-plane of the base frame at a distance - � ��� m.
The effective focal length of the three cameras is �" mm, and the pixel dimensions are
#�� 
 #�� ;m. To reproduce the geometric distortion effects of real cameras, a polyno-
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mial model including radial distortion, decentering distortion and thin prism distortion
has been adopted [9, 10]. The numerical values of the distortion parameters have been
chosen so as to achieve errors up to ���% of the sensor half dimension. The same model
has been considered in the Kalman filter algorithm for distortion compensation, and the
corresponding parameters have been chosen so as to achieve errors ranging from �%
up to �"%, reproducing a typical situation of partial distortion compensation. Moreover,
errors up to ��#% have been introduced in the parameters of the geometric model of the
stereo vision system in order to reflect a typical situation of imperfect system calibration.

A target object characterized by �" feature points, corresponding to the object cor-
ners, is considered (see Fig. 2). The selection procedure is used to find four optimal
feature points at each sample time.

The object moves according to a trajectory of sinusoidal type of # s duration and
amplitude ��� mm, ��� mm, ��� mm, respectively, for the �, + and - component of the
position, and �� deg, �� deg, �� deg, respectively, for the Roll, Pitch and Yaw angles.

White independent Gaussian noise is added to the true projections on the cameras
image plane of the feature points. In order to simulate spatial sampling and quantization
errors, the variance of the noise has been chosen as ��#�� where � � #�� ;m is the pixel
dimension.

The output measurement covariance matrix has been set to � � ����'!�� , where
!� is the (� 
 �) identity matrix. The numerical value has been computed on the basis
of the statistics of the calibration errors imposed on the camera calibration parameters.
The disturbance noise covariance has been selected so as to give a rough representation
of the errors due to the simplification introduced on the model (constant velocity), by
considering only velocity disturbance, i.e.

( � ���%��� ��� �� ��� �� ��� �� ��� �� ��� �� ���

where the units are (mm/s)� for translational velocities and (rad/s)� for rotational velo-
cities.

The corresponding time histories of the components of the position and orientation
estimation error are reported in Fig. 8.

It can be observed that the estimation error is in the range �� mm for the � compo-
nent whereas is in the range of �� mm for the + and - components.

Analogously, the estimation error is in the range of����� for the Yaw angle, whereas
is in the range ��� for the Roll and Pitch angles. The reason of this asymmetric be-
haviour is due to the asymmetric geometry chosen for the cameras locations. It is worth
noticing that a residual error remains also when the object stops, especially on the orien-
tation components, due to the calibration error, the distortion and the measurement noise.

In Fig. 9 a sequence of �� different projections of the target object on the image
plane of camera 1 is reported, as reconstructed from the positions of the feature points
selected by the proposed algorithm. It can be seen that the pre-selection algorithm allows
to correctly predict the positions of the feature points (object corners) that are visible
from the camera at the next sample time.
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Figure 8. Position error (left) and orientation error (right).

In order to test the effectiveness of the proposed approach in the case of multiple
target objects, a second object moving according to a sinusoidal trajectory has been
added to the previous one. The time histories of the position and orientation errors are
not reported for brevity. In Fig. 10 the projections of the two target objects on the image
plane of camera 1 are represented, as reconstructed using the Kalman filter estimates and
the pre-selection algorithm. It can be seen that the visible feature points are correctly
identified also when the objects are superimposed.

7. Conclusion

The estimation of the pose (position and orientation)of moving objects from visual
measurements was considered in this paper. The extended Kalman filter was used to
recursively compute an estimate of the motion variables from the measurements of the
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Figure 9. Sequence of projections of the target object on the image plane of camera 1

Figure 10. Sequence of projections of two target objects on the image plane of camera 1

position of suitable feature points of the objects. The efficiency of the algorithm was
improved by adopting a technique of pre-selection of the visible feature points at each
sample time based on a BSP tree representation of the objects geometry. The proposed
algorithm can be used also to the case of target objects and obstacles with interposing
parts. Computer simulations have shown the effectiveness of the algorithm both in the
case of a single object and in the case of superimposing objects.
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Appendix

The computation of the (���
 ��) Jacobian matrix ,� in (16) gives

,� �

�
��

��!
�

��

�+!
�

��

�-!
�

��

�2!
�

��

�E!
�

��

�F!
�

�
�

(17)



3-D OBJECTS MOTION ESTIMATION 87

where � is a null (��� 
 �) vector corresponding to the partial derivatives of � with
respect to the velocity variables, which are null because function � does not depend on
the velocity.

Taking into account the expression of � in (10), the non-null elements of the Jacobian
matrix (17) have the form:
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�-��/ ��� (19)

where ' � �!� +!� -!� 2!� E!� F!, � � �� � � � � �, G � �� � � � ��.
The partial derivatives on the right-hand side of (18) and (19) can be computed as

follows.
In view of (5), the partial derivatives with respect to the components of vector %! �

��! +! -!�
� are the elements of the Jacobian matrix

�$��/
�%!

� ��
���

In order to express in compact form the partial derivatives with respect to the com-
ponents of the vector &! � �2! E! F!�

�, it is useful considering the following equali-
ties [11]

d�!�&!� � ��d/!��!�&!� � �!�&!�����
! �&!�d/!� (20)

�/! � �!�&!�d&! (21)

where ���� is the skew-symmetric matrix operator, /! is the angular velocity of the
object frame with respect to the base frame, and the matrices �! and �!, in the case of
Roll, Pitch and Yaw angles, have the form

�!�&!� �


�3%�30� 3%� 0� 1� �  %�31� 3%� 0�31� �  %� 1�
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� 0� 30� 1� 30�31�
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� 3%�  %�30�
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� �

with 3+ � �	
' and  + � 
���'�. By virtue of (20), (21), and the properties of the
skew-symmetric matrix operator, the following chain of equalities holds

d��!�&!�$
!
/� � d��!�&!��$
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!
/
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� �!�&!��
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hence
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At this point, by virtue of (5) and (22), the following equality holds
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